找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator and Matrix Theory, Function Spaces, and Applications; International Worksh Marek Ptak,Hugo J. Woerdeman,Micha? Wojtylak Conference

[復(fù)制鏈接]
樓主: Intermediary
41#
發(fā)表于 2025-3-28 16:16:12 | 只看該作者
42#
發(fā)表于 2025-3-28 22:05:08 | 只看該作者
43#
發(fā)表于 2025-3-29 01:28:25 | 只看該作者
Maximal Noncompactness of Singular Integral Operators on , Spaces with Some Khvedelidze Weights,. We consider the singular integral operator . with constant coefficients ., where . is the Cauchy singular integral operator over .. We provide a detailed proof of the maximal noncompactness of the operator . on . spaces with the Khvedelidze weights . satisfying .. This result was announced by Naum
44#
發(fā)表于 2025-3-29 07:03:02 | 只看該作者
45#
發(fā)表于 2025-3-29 09:47:50 | 只看該作者
46#
發(fā)表于 2025-3-29 11:39:43 | 只看該作者
47#
發(fā)表于 2025-3-29 19:25:03 | 只看該作者
On de Finetti-Type Theorems,uences of two-point valued exchangeable random variables is obtained by randomization of the binomial distribution. This result has since found several generalizations both in classical and noncommutative settings. In this paper, we discuss a series of recent results that extend de Finetti’s theorem
48#
發(fā)表于 2025-3-29 20:16:24 | 只看該作者
49#
發(fā)表于 2025-3-30 03:46:38 | 只看該作者
Conference proceedings 2024bert transform, small rank perturbations, spectral constants, Banach-Lie groupoids, reproducing kernels, and the Kippenhahn curve. The volume includes contributions by a number of the world‘s leading experts and can therefore be used as an introduction to the currently active research areas in operator theory.
50#
發(fā)表于 2025-3-30 05:23:57 | 只看該作者
Commuting Toeplitz Operators and Moment Maps on Cartan Domains of Type III,ators. This leads to a natural generalization of known results for the unit disk. We also compute spectral integral formulas for the Toeplitz operators corresponding to the Abelian Elliptic and Parabolic cases.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苏尼特左旗| 达州市| 莫力| 临夏县| 饶阳县| 宁强县| 深水埗区| 墨竹工卡县| 岑巩县| 广饶县| 辽阳县| 保靖县| 杨浦区| 永寿县| 平乡县| 常德市| 资源县| 乌鲁木齐县| 平和县| 南宁市| 于田县| 澳门| 新余市| 龙门县| 皋兰县| 南宫市| 河津市| 海淀区| 辛集市| 青海省| 鄂尔多斯市| 搜索| 定西市| 西安市| 望奎县| 宁强县| 兰西县| 景洪市| 潍坊市| 龙陵县| 文水县|