找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator and Matrix Theory, Function Spaces, and Applications; International Worksh Marek Ptak,Hugo J. Woerdeman,Micha? Wojtylak Conference

[復制鏈接]
樓主: Intermediary
31#
發(fā)表于 2025-3-26 22:48:37 | 只看該作者
32#
發(fā)表于 2025-3-27 04:01:30 | 只看該作者
33#
發(fā)表于 2025-3-27 06:21:08 | 只看該作者
34#
發(fā)表于 2025-3-27 12:38:07 | 只看該作者
35#
發(fā)表于 2025-3-27 13:36:19 | 只看該作者
,Hilbert Transform in the Cartwright–de Branges Space, note, we present a formula for the Hilbert transform of ., where . belongs to the Cartwright–de Branges space associated with the de Branges function .. The formula implies several other known results.
36#
發(fā)表于 2025-3-27 19:52:48 | 只看該作者
A Note on the Dilation of a Certain Family of Tetrablock Contractions,t disc (only the first operator of the tetrablock contraction depends on the parameter). The dilation space is the same for any member of the family. Explicit dilation for the adjoint tetrablock contraction . for every member of the family mentioned above is constructed as well. This example is impo
37#
發(fā)表于 2025-3-28 00:24:52 | 只看該作者
38#
發(fā)表于 2025-3-28 02:53:12 | 只看該作者
39#
發(fā)表于 2025-3-28 08:53:36 | 只看該作者
On Non-commutative Spreadability, These semigroups are strictly related to spreadability, as the latter can be directly stated in terms of invariance with respect to their action..We are mainly focused on spreadable, Boolean, monotone, and .-deformed processes. In particular, we give a suitable version of the Ryll-Nardzewski Theore
40#
發(fā)表于 2025-3-28 11:44:16 | 只看該作者
On the Berger-Coburn Phenomenon, when ., that is, for a bounded symbol ., if . is a compact or Schatten class operator, then so is .. More recently J. Xia has provided a simple example that shows that there is no Berger-Coburn phenomenon for trace class Hankel operators on the classical Fock space .. Using Xia’s example, we show t
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宝鸡市| 绥宁县| 阿勒泰市| 麦盖提县| 安仁县| 阿勒泰市| 工布江达县| 恭城| 宾川县| 茂名市| 商河县| 河南省| 金华市| 四川省| 六安市| 金溪县| 措美县| 荥阳市| 西宁市| 勃利县| 屯昌县| 北票市| 睢宁县| 许昌市| 汝阳县| 慈利县| 惠来县| 留坝县| 聂拉木县| 东丰县| 祁连县| 志丹县| 新泰市| 资源县| 遂平县| 平顶山市| 九江市| 福州市| 海安县| 华坪县| 黄平县|