找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Theory, Operator Algebras, and Matrix Theory; Carlos André,M. Amélia Bastos,Ion Zaballa Book 2018 Springer International Publishi

[復(fù)制鏈接]
樓主: inroad
31#
發(fā)表于 2025-3-26 23:52:30 | 只看該作者
Weighted Statistical Relative Approximation by Positive Linear Operators,en, we construct an example such that our new approximation result works but its weighted statistical and statistical (and classical) cases do not work. We also compute the rates of weighted statistical relative uniform convergence of sequences of positive linear operators.
32#
發(fā)表于 2025-3-27 02:13:45 | 只看該作者
33#
發(fā)表于 2025-3-27 06:27:45 | 只看該作者
34#
發(fā)表于 2025-3-27 13:00:39 | 只看該作者
Spectral Algorithms for MRA Orthonormal Wavelets,l algorithms depend on the choice of pairs of suitable orthonormal bases (ONBs). This work presents the spectral algorithms for three different pairs of ONBs: Haar bases, Walsh–Paley bases and trigonometric bases. The Walsh–Paley bases connect wavelet theory and dyadic harmonic analysis. The results
35#
發(fā)表于 2025-3-27 15:16:15 | 只看該作者
The NIEP,. entry-wise nonnegative matrix. The NIEP has a long history and is a known hard (perhaps the hardest in matrix analysis?) and sought after problem. Thus, there are many subproblems and relevant results in a variety of directions. We survey most work on the problem and its several variants, with an
36#
發(fā)表于 2025-3-27 18:39:55 | 只看該作者
37#
發(fā)表于 2025-3-28 01:21:19 | 只看該作者
Factorization of Singular Integral Operators with a Carleman Backward Shift: The Vector Case, the form . with . = . + ., . = . + ., where . are the Cauchy projectors in . defined componentwise, and . is an involutory shift operator associated with the given Carleman backward shift also defined componentwise. By generalization to the vector case (. > 1) of the previously obtained results for
38#
發(fā)表于 2025-3-28 03:24:03 | 只看該作者
39#
發(fā)表于 2025-3-28 07:31:31 | 只看該作者
40#
發(fā)表于 2025-3-28 13:48:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大渡口区| 许昌市| 时尚| 三门峡市| 中西区| 龙里县| 鹿邑县| 巴彦县| 文成县| 顺平县| 南投市| 邮箱| 庆城县| 格尔木市| 林芝县| 茶陵县| 石泉县| 崇阳县| 宁国市| 河东区| 台江县| 荆州市| 银川市| 达孜县| 什邡市| 阳东县| 璧山县| 安溪县| 平舆县| 铁力市| 宝清县| 广汉市| 东丰县| 沿河| 武功县| 饶平县| 廊坊市| 弥勒县| 石城县| 克拉玛依市| 石河子市|