找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Theory, Operator Algebras and Their Interactions with Geometry and Topology; Ronald G. Douglas Me Raul E Curto,William Helton,Guol

[復(fù)制鏈接]
樓主: 領(lǐng)口
41#
發(fā)表于 2025-3-28 16:16:26 | 只看該作者
The Extended Aluthge Transform,that the spherical Aluthge transform of a commuting pair of operators corresponds to the extended Aluthge transform of a 2?×?2 operator matrix built from the pair; thus, the theory of extended Aluthge transforms yields results for spherical Aluthge transforms.
42#
發(fā)表于 2025-3-28 21:00:28 | 只看該作者
43#
發(fā)表于 2025-3-29 00:12:28 | 只看該作者
44#
發(fā)表于 2025-3-29 05:25:59 | 只看該作者
Nevanlinna-Pick Families and Singular Rational Varieties,ely many points. Letting . be the weak-? closure of . in .—the multiplier algebra of the Drury-Arveson space. We provide a parametrization for the Nevanlinna-Pick family of . for .?≥?1. In particular, when .?=?1 the parameter space for the Nevanlinna-Pick family is the Picard group of ..
45#
發(fā)表于 2025-3-29 09:55:43 | 只看該作者
46#
發(fā)表于 2025-3-29 14:01:49 | 只看該作者
Uniform Roe Algebras and Geometric RD Property,t is a smooth and dense subalgebra of the uniform Roe algebra of the space .. This resulted an alternate proof of a result of the first named author on the nonexistence of positive scalar curvature on certain manifolds.
47#
發(fā)表于 2025-3-29 15:49:52 | 只看該作者
Singular Subgroups in ,-Groups and Their von Neumann Algebras,p containing a loxodromic element, then .?
48#
發(fā)表于 2025-3-29 20:36:38 | 只看該作者
49#
發(fā)表于 2025-3-30 02:40:41 | 只看該作者
50#
發(fā)表于 2025-3-30 08:01:04 | 只看該作者
Cauchy-Riemann Equations for Free Noncommutative Functions,e context of L?wner’s theorem in several noncommutative variables. Additionally, as part of our investigation of real noncommutative functions, we show that real noncommutative functions are in fact noncommutative functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 12:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家川| 昔阳县| 临湘市| 舞阳县| 定日县| 江门市| 定安县| 油尖旺区| 康平县| 濮阳县| 通河县| 宁波市| 安吉县| 正蓝旗| 建德市| 墨竹工卡县| 永城市| 桂东县| 四平市| 湛江市| 甘泉县| 和平县| 子洲县| 浦东新区| 织金县| 伊吾县| 光泽县| 晴隆县| 务川| 沭阳县| 古丈县| 芒康县| 上犹县| 恩施市| 正安县| 安乡县| 高安市| 四平市| 新乐市| 沙雅县| 陆良县|