找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Theory, Operator Algebras and Applications; M. Amélia Bastos,Amarino Lebre,Ilya M. Spitkovsky Conference proceedings 2014 Springe

[復(fù)制鏈接]
樓主: 時間
61#
發(fā)表于 2025-4-1 03:57:10 | 只看該作者
62#
發(fā)表于 2025-4-1 07:19:50 | 只看該作者
63#
發(fā)表于 2025-4-1 11:50:07 | 只看該作者
64#
發(fā)表于 2025-4-1 17:38:28 | 只看該作者
65#
發(fā)表于 2025-4-1 19:51:43 | 只看該作者
,*-Algebra Generated by Mapping Which Has Finite Orbits,ators and its quotient algebra is .-graded. We consider the covariant system associated with the quotient algebra and construct the conditional expectation onto the fixed point subalgebra. We prove that the quotient algebra is nuclear and so is the algebra generated by mapping.
66#
發(fā)表于 2025-4-2 01:26:02 | 只看該作者
67#
發(fā)表于 2025-4-2 05:06:40 | 只看該作者
Diffraction from Polygonal-conical Screens, an Operator Approach,ations. Various cross connections are exposed, particularly considering classical Wiener–Hopf operators in Sobolev spaces as general Wiener–Hopf operators in Hilbert spaces and studying relations between the crucial operators in game. Former results are extended, particularly to multiply-connected screens.
68#
發(fā)表于 2025-4-2 09:28:11 | 只看該作者
Conference proceedings 2014ions, held in Lisbon in September 2012. The volume particularly focuses on (i) operator theory and harmonic analysis (singular integral operators with shifts; pseudodifferential operators, factorization of almost periodic matrix functions; inequalities; Cauchy type integrals; maximal and singular op
69#
發(fā)表于 2025-4-2 11:13:13 | 只看該作者
Operator Theory: Advances and Applicationshttp://image.papertrans.cn/o/image/702348.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柘城县| 吴忠市| 宁波市| 阿荣旗| 桂平市| 汉源县| 军事| 满洲里市| 东辽县| 梅州市| 吴川市| 郑州市| 崇仁县| 聊城市| 闻喜县| 米林县| 鹤庆县| 长沙市| 朝阳市| 靖远县| 安康市| 德化县| 清徐县| 秦安县| 英山县| 巍山| 伊川县| 太保市| 德安县| 双牌县| 澳门| 鹤壁市| 莆田市| 湖北省| 平果县| 城口县| 瑞丽市| 小金县| 宾川县| 洞口县| 利辛县|