找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Theory, Analysis and the State Space Approach; In Honor of Rien Kaa Harm Bart,Sanne ter Horst,Hugo J. Woerdeman Book 2018 Springer

[復(fù)制鏈接]
樓主: Limbic-System
21#
發(fā)表于 2025-3-25 05:23:35 | 只看該作者
L-free directed bipartite graphs and echelon-type canonical forms, in the sense that it is unique. In [4], working within the context of the algebra . of upper triangular .×. matrices, certain new canonical forms of echelon-type have been introduced. Subalgebras of . determined by a pattern of zeros have been considered too. The issue there is whether or not those
22#
發(fā)表于 2025-3-25 07:55:28 | 只看該作者
23#
發(fā)表于 2025-3-25 13:47:21 | 只看該作者
24#
發(fā)表于 2025-3-25 19:05:29 | 只看該作者
25#
發(fā)表于 2025-3-25 20:00:51 | 只看該作者
26#
發(fā)表于 2025-3-26 00:36:06 | 只看該作者
An application of the Schur complement to truncated matricial power moment problems,lems. Using a special kind of Schur complement we obtain a more transparent insight into the nature of this phenomenon. In particular, a concrete general principle to describe it is obtained. This unifies an important aspect connected with truncated matricial moment problems.
27#
發(fā)表于 2025-3-26 08:01:47 | 只看該作者
Canonical form for ,-symplectic matrices,tic, that is, . = .. . canonical form for such pairs is derived under the transformations (.) → (. ., .) for invertible matrices .. In the canonical form for the pair, the matrix . is brought in standard (real or complex) Jordan normal form, in contrast to existing canonical forms.
28#
發(fā)表于 2025-3-26 08:44:25 | 只看該作者
A note on the Fredholm theory of singular integral operators with Cauchy and Mellin kernels,1) of the real axis ? is proved together with a respective Fredholm index formula. These operators are composed by the Cauchy singular integral operator, Mellin operators and operators of multiplication by piecewise continuous functions.
29#
發(fā)表于 2025-3-26 16:36:20 | 只看該作者
30#
發(fā)表于 2025-3-26 17:43:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平遥县| 射洪县| 余姚市| 巫山县| 尤溪县| 舞阳县| 武汉市| 昭通市| 齐河县| 郯城县| 凤阳县| 横山县| 阆中市| 苏尼特右旗| 永德县| 福建省| 晋中市| 锦屏县| 盘山县| 台中县| 北流市| 宁德市| 吉水县| 彭山县| 洛隆县| 锡林浩特市| 当阳市| 黎平县| 台南市| 昌宁县| 黄大仙区| 磐石市| 庆安县| 抚州市| 黄山市| 安阳县| 叙永县| 饶平县| 个旧市| 长寿区| 平远县|