找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Operator Theory, Analysis and Mathematical Physics; Jan Janas,Pavel Kurasov,Günter Stolz Conference proceedings 2007 Birkh?user Basel 2007

[復(fù)制鏈接]
樓主: Awkward
41#
發(fā)表于 2025-3-28 18:00:46 | 只看該作者
42#
發(fā)表于 2025-3-28 21:13:10 | 只看該作者
43#
發(fā)表于 2025-3-29 02:05:18 | 只看該作者
Uniform and Smooth Benzaid-Lutz Type Theorems and Applications to Jacobi Matrices, generalizations of the Benzaid-Lutz theorem (a Levinson type theorem for discrete linear systems) and are used to develop a technique for proving absence of accumulation points in the pure point spectrum of Jacobi matrices. The technique is illustrated by proving discreteness of the spectrum for a class of unbounded Jacobi operators.
44#
發(fā)表于 2025-3-29 04:48:40 | 只看該作者
Operator Theory: Advances and Applicationshttp://image.papertrans.cn/o/image/702344.jpg
45#
發(fā)表于 2025-3-29 11:07:05 | 只看該作者
https://doi.org/10.1007/978-3-7643-8135-6Dirichlet-to-Neumann map; Jacobi matrix; Lyapunov exponent; Operator theory; functional model; mathematic
46#
發(fā)表于 2025-3-29 15:00:18 | 只看該作者
Finiteness of Eigenvalues of the Perturbed Dirac Operator,Finiteness criteria are established for the point spectrum of the perturbed Dirac operator. The results are obtained by applying the direct methods of the perturbation theory of linear operators. The particular case of the Hamiltonian of a Dirac particle in an electromagnetic field is also considered.
47#
發(fā)表于 2025-3-29 17:26:12 | 只看該作者
Trace Formulas for Jacobi Operators in Connection with Scattering Theory for Quasi-Periodic BackgroWe investigate trace formulas for Jacobi operators which are trace class perturbations of quasi-periodic finite-gap operators using Krein’s spectral shift theory. In particular we establish the conserved quantities for the solutions of the Toda hierarchy in this class.
48#
發(fā)表于 2025-3-29 21:39:15 | 只看該作者
49#
發(fā)表于 2025-3-30 01:12:18 | 只看該作者
50#
發(fā)表于 2025-3-30 07:02:03 | 只看該作者
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金阳县| 什邡市| 枣庄市| 赤壁市| 喀喇| 清河县| 海南省| 巫溪县| 南充市| 交口县| 绥化市| 宁城县| 永兴县| 宜君县| 广东省| 准格尔旗| 沈阳市| 崇明县| 潼关县| 临猗县| 汉源县| 章丘市| 治多县| 嘉祥县| 台中市| 拜城县| 长宁区| 扶风县| 湾仔区| 资源县| 丰台区| 吉首市| 宜宾市| 西盟| 凤庆县| 扎赉特旗| 延长县| 萨迦县| 枞阳县| 泸定县| 沙坪坝区|