找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Theory in Inner Product Spaces; Karl-Heinz F?rster,Peter Jonas,Carsten Trunk Conference proceedings 2007 Birkh?user Basel 2007 Ne

[復(fù)制鏈接]
樓主: 回憶錄
21#
發(fā)表于 2025-3-25 03:59:06 | 只看該作者
Conference proceedings 2007 A. Fleige, K.-H. F?rster, S. Hassi, P. Jonas, M. Kaltenb?ck, I. Karabash, A. Kostenko, H. Langer, A. Luger, C. Mehl, B. Nagy, H. Neidhart, V. Pivovarchik, J. Rehberg, L. Rodman, A. Sandovici, H. de Snoo, L.I. Soukhotcheva, C. Trunk, H. Winkler, H. Woracek.
22#
發(fā)表于 2025-3-25 10:46:07 | 只看該作者
Generalized Resolvents of a Class of Symmetric Operators in Krein Spaces,same spectral properties as a definitizable operator. We show that the Krein-Naimark formula establishes a bijective correspondence between the compressed resolvents of locally definitizable self-adjoint extensions . of . acting in Krein spaces . and a special subclass of meromorphic functions.
23#
發(fā)表于 2025-3-25 14:52:30 | 只看該作者
Block Operator Matrices, Optical Potentials, Trace Class Perturbations and Scattering, class perturbations the channel scattering matrices are calculated. Using Feshbach’s optical potential it is shown that for a given spectral parameter the channel scattering matrices can be recovered either from a dissipative or from a Lax-Phillips scattering theory.
24#
發(fā)表于 2025-3-25 18:42:58 | 只看該作者
Canonical Differential Equations of Hilbert-Schmidt Type, property that the selfadjoint operators associated to a canonical system have resolvents of Hilbert-Schmidt type in terms of the Hamiltonian . as well as in terms of the associated Titchmarsh-Weyl coefficient.
25#
發(fā)表于 2025-3-25 23:22:28 | 只看該作者
26#
發(fā)表于 2025-3-26 00:13:05 | 只看該作者
27#
發(fā)表于 2025-3-26 04:49:15 | 只看該作者
28#
發(fā)表于 2025-3-26 09:48:08 | 只看該作者
29#
發(fā)表于 2025-3-26 14:12:44 | 只看該作者
30#
發(fā)表于 2025-3-26 18:27:14 | 只看該作者
Some Basic Properties of Polynomials in a Linear Relation in Linear Spaces,The behavior of the domain, the range, the kernel and the multivalued part of a polynomial in a linear relation is analyzed, respectively.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大荔县| 平塘县| 屯门区| 云龙县| 凤冈县| 韶关市| 绍兴县| 浦北县| 恭城| 金秀| 龙南县| 邮箱| 天津市| 广宁县| 铁力市| 府谷县| 永春县| 贵定县| 繁昌县| 德阳市| 三河市| 汉寿县| 鲁甸县| 巴林左旗| 宝鸡市| 佳木斯市| 马山县| 红原县| 迭部县| 邵武市| 慈利县| 陇南市| 广平县| 宁国市| 界首市| 佳木斯市| 宁夏| 镇坪县| 建平县| 扎赉特旗| 酒泉市|