找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Theory in Harmonic and Non-commutative Analysis; 23rd International W Joseph A. Ball,Michael A. Dritschel,Denis Potapov Conference

[復(fù)制鏈接]
樓主: corrode
11#
發(fā)表于 2025-3-23 11:00:52 | 只看該作者
12#
發(fā)表于 2025-3-23 17:55:54 | 只看該作者
Generalized Repeated Interaction Model and Transfer Functions, is an outgoing Cuntz scattering system involving two wandering subspaces. We associate to this model an input/output linear system which leads to a transfer function. This transfer function is a multi-analytic operator, and we show that it is inner if we assume that the system is observable. Finall
13#
發(fā)表于 2025-3-23 19:51:03 | 只看該作者
,Some Remarks on the Spectral Problem Underlying the Camassa–Holm Hierarchy,n particular, to the eigenvalue problem underlying the Camassa–Holm hierarchy. In fact, we will treat a more general version where . represents a positive definite Schr?dinger or Sturm–Liouville operator . in . associated with a differential expression of the form ., and . represents an operator of
14#
發(fā)表于 2025-3-24 00:26:55 | 只看該作者
15#
發(fā)表于 2025-3-24 05:16:03 | 只看該作者
Harmonic Analysis and Stochastic Partial Differential Equations: The Stochastic Functional Calculuss and functional calculus techniques in harmonic analysis. The connection is made more explicit in this paper with the notion of a ...In the deterministic setting, suppose that . are bounded linear operators acting on a Banach space .. A pair . of continuous probability measures on [0, 1] determines
16#
發(fā)表于 2025-3-24 09:24:09 | 只看該作者
,Subideals of Operators – A Survey and Introduction to Subideal-Traces,f Fong and Radjavi and continuing with two recent articles by the authors of this survey. This article surveys this study embodied in these three articles. A subideal is a two-sided ideal of . (for specificity also called a .-ideal) for . an arbitrary ideal of .(.). In this terminology we alternativ
17#
發(fā)表于 2025-3-24 14:44:21 | 只看該作者
18#
發(fā)表于 2025-3-24 16:10:59 | 只看該作者
19#
發(fā)表于 2025-3-24 22:20:03 | 只看該作者
20#
發(fā)表于 2025-3-25 01:21:31 | 只看該作者
Wolfram Bauer,Crispin Herrera Ya?ez,Nikolai Vasilevskien Generalsekret?r leitet. Verstand zur Verst?ndigung - man k?nnte keinen besseren Titel für eine Festschrift finden, die ihm zu seinem 60. Geburtstag gewidmet wird. Und doch sollte man dem Verstand das Herz und dem Herz die Phantasie hinzufügen, um seinem Wirken für Wissenschaft und Kultur- politik
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
无为县| 温泉县| 南昌市| 临西县| 鹿邑县| 南部县| 扬中市| 德清县| 峨眉山市| 南投市| 视频| 辽中县| 漾濞| 宜川县| 博湖县| 曲松县| 从化市| 营山县| 巴马| 都昌县| 高碑店市| 萝北县| 聂拉木县| 五华县| 新昌县| 静宁县| 灌南县| 昭苏县| 长白| 东乌珠穆沁旗| 南京市| 定日县| 开原市| 株洲县| 金乡县| 丹凤县| 固原市| 穆棱市| 巫山县| 浮山县| 华宁县|