找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Theory and Differential Equations; Anatoly G. Kusraev,Zhanna D. Totieva Conference proceedings 2021 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: complicated
31#
發(fā)表于 2025-3-27 00:56:28 | 只看該作者
,On the Brezis–Lieb Lemma and Its Extensions,hich the Brezis–Lieb lemma holds true. This gives also a net-version of the Brezis–Lieb lemma in .. for .?∈?[1, .). We discuss an operator version of the Brezis–Lieb lemma in certain convergence vector lattices.
32#
發(fā)表于 2025-3-27 04:53:08 | 只看該作者
33#
發(fā)表于 2025-3-27 06:36:39 | 只看該作者
Global Boundedness of Solutions of Continuous Social Stratification Model,y. We first obtain spatially homogeneous solutions of the problem. Next we employ the comparison theorems for nonlinear parabolic equations to derive sufficient conditions of global boundedness and blow up for the solutions which correspond to spatially inhomogeneous initial data. Finally we perform
34#
發(fā)表于 2025-3-27 10:45:14 | 只看該作者
35#
發(fā)表于 2025-3-27 13:36:33 | 只看該作者
36#
發(fā)表于 2025-3-27 18:09:51 | 只看該作者
37#
發(fā)表于 2025-3-28 00:58:40 | 只看該作者
38#
發(fā)表于 2025-3-28 05:55:31 | 只看該作者
Spectral Properties of Killing Vector Fields of Constant Length and Bounded Killing Vector Fields,zations on Riemannian manifolds. One of the main result is the following: If . is a Lie algebra of Killing vector fields on a given Riemannian manifold (., .), and . has constant length on (., .), then the linear operator . has a pure imaginary spectrum (Nikonorov, J. Geom. Phys. 145 (2019), 103485)
39#
發(fā)表于 2025-3-28 07:08:32 | 只看該作者
40#
發(fā)表于 2025-3-28 10:54:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
周口市| 白山市| 兰考县| 都江堰市| 德昌县| 五河县| 卢湾区| 灵川县| 通许县| 广南县| 龙山县| 阿克陶县| 九龙县| 堆龙德庆县| 扶余县| 东乌珠穆沁旗| 马山县| 偏关县| 盐边县| 大竹县| 平舆县| 崇左市| 清徐县| 正阳县| 南充市| 安新县| 蓬莱市| 蓬溪县| 朝阳区| 卢湾区| 太仆寺旗| 开封市| 舒兰市| 宜城市| 岳池县| 花垣县| 扎兰屯市| 清水县| 遂溪县| 邵阳市| 潢川县|