找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics; Wolfgang Arendt,Ralph Chill,Yuri Tomilov Conference

[復(fù)制鏈接]
樓主: 教條
31#
發(fā)表于 2025-3-27 00:06:16 | 只看該作者
,Generation of Subordinated Holomorphic Semigroups via Yosida’s Theorem,. is the generator of a holomorphic C.-semigroup on a Banach space, bounded on .. Such estimates are of value, in particular, in approximation theory of operator semigroups. As a corollary, weobtain a new proof of the fact that . generates a holomorphic semigroup whenever ?. does, established recent
32#
發(fā)表于 2025-3-27 03:35:42 | 只看該作者
33#
發(fā)表于 2025-3-27 08:04:17 | 只看該作者
34#
發(fā)表于 2025-3-27 10:28:07 | 只看該作者
35#
發(fā)表于 2025-3-27 14:17:24 | 只看該作者
36#
發(fā)表于 2025-3-27 18:24:17 | 只看該作者
Dichotomy Results for Norm Estimates in Operator Semigroups,The results in this survey indicate that the quantitative behaviour of the semigroup at the origin provides additional qualitative information, such as uniform continuity or analyticity.
37#
發(fā)表于 2025-3-28 00:42:58 | 只看該作者
Convergence of the Dirichlet-to-Neumann Operator on Varying Domains,We prove resolvent convergence for the Dirichlet-to-Neumann operator on domains which are uniformly starshaped with respect to a ball, when the domains converge appropriately.
38#
發(fā)表于 2025-3-28 05:00:03 | 只看該作者
A Banach Algebra Approach to the Weak Spectral Mapping Theorem for Locally Compact Abelian Groups,We give a general version of the weak spectral mapping theorem for non-quasianalytic representations of locally compact abelian groups which are weakly continuous in the sense of Arveson, based on a Banach algebra approach.
39#
發(fā)表于 2025-3-28 09:06:21 | 只看該作者
Regularity Properties of Sectorial Operators: Counterexamples and Open Problems,We give a survey on the different regularity properties of sectorial operators on Banach spaces. We present the main results and open questions in the theory and then concentrate on the known methods to construct various counterexamples.
40#
發(fā)表于 2025-3-28 11:47:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌海市| 淮南市| 金山区| 军事| 忻州市| 翼城县| 郎溪县| 岳西县| 沽源县| 三原县| 延安市| 山东省| 普洱| 瑞安市| 庆城县| 嘉祥县| 壶关县| 铜川市| 甘南县| 丰都县| 屏边| 垣曲县| 健康| 简阳市| 岳普湖县| 信阳市| 华池县| 伊金霍洛旗| 贡山| 阜宁县| 庐江县| 油尖旺区| 九寨沟县| 长汀县| 岳西县| 峡江县| 广平县| 内乡县| 句容市| 吕梁市| 梁河县|