找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Functions and Localization of Spectra; Michael I. Gil’ Book 2003 Springer-Verlag Berlin Heidelberg 2003 Eigenvalue.Hilbert space.

[復(fù)制鏈接]
樓主: 凝固
21#
發(fā)表于 2025-3-25 04:36:35 | 只看該作者
22#
發(fā)表于 2025-3-25 11:15:47 | 只看該作者
8 Bounded Perturbations of Nonselfadjoint Operators,nvertibility conditions and bounds for the spectra of such operators. In particular, we consider perturbations of the von Neumann - Schatten operators and operators with von Neumann - Schatten Hermitian components.
23#
發(fā)表于 2025-3-25 11:45:20 | 只看該作者
24#
發(fā)表于 2025-3-25 18:05:32 | 只看該作者
25#
發(fā)表于 2025-3-25 22:50:29 | 只看該作者
16 Hille - Tamarkin Integral Operators,e inverse operators and positive invertibility conditions are established. In addition, bounds for the spectral radius are suggested. Applications to nonselfadjoint differential operators and integro-differential ones are also discussed.
26#
發(fā)表于 2025-3-26 03:02:02 | 只看該作者
17 Integral Operators in Space ,,,sitive invertibility conditions are established. In addition, bounds for the spectral radius are suggested. Applications to nonselfadjoint differential operators and integro-differential ones are also discussed.
27#
發(fā)表于 2025-3-26 06:09:03 | 只看該作者
28#
發(fā)表于 2025-3-26 10:47:34 | 只看該作者
29#
發(fā)表于 2025-3-26 14:35:09 | 只看該作者
30#
發(fā)表于 2025-3-26 18:20:55 | 只看該作者
3 Invertibility of Finite Matrices,The present chapter deals with various types of invertibility conditions for finite matrices. In particular, we improve the classical Levy-Desplanques theorem and other well-known invertibility results for matrices that are close to triangular ones.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屏南县| 利川市| 岐山县| 竹山县| 古交市| 庆阳市| 新闻| 楚雄市| 拜城县| 黄龙县| 林芝县| 尉氏县| 金坛市| 石景山区| 长汀县| 平乡县| 封开县| 应城市| 乌拉特中旗| 清流县| 元阳县| 清丰县| 五原县| 富平县| 荥阳市| 罗城| 青岛市| 潞西市| 丹阳市| 栾川县| 江西省| 九寨沟县| 石城县| 阳新县| 长武县| 黑龙江省| 仁怀市| 荣成市| 揭东县| 淮滨县| 津南区|