找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Extensions, Interpolation of Functions and Related Topics; 14th International C A. Gheondea,D. Timotin,F.-H. Vasilescu Book 1993 S

[復(fù)制鏈接]
樓主: affidavit
11#
發(fā)表于 2025-3-23 09:49:12 | 只看該作者
12#
發(fā)表于 2025-3-23 17:04:05 | 只看該作者
13#
發(fā)表于 2025-3-23 19:54:10 | 只看該作者
14#
發(fā)表于 2025-3-23 23:14:33 | 只看該作者
,A Method for Constructing Invariant Subspaces for Some Operators on Kre?n Spaces,, subspaces for a class of operators on Kre?n spaces known as weakly definitizable operators. This includes, among others, the definitizable selfadjoint and definitizable unitary operators. A simple proof of the existence of an orthogonal pair of maximal definite invariant subspaces for positive ope
15#
發(fā)表于 2025-3-24 04:56:53 | 只看該作者
16#
發(fā)表于 2025-3-24 08:20:36 | 只看該作者
Antitonicity of the Inverse and J-Contractivity, of positive invertible operators, i.e., given two such operators . and ., (?). ≤ . ? .. ≥ ... In this paper recent work by Shmul’yan [.] and the authors [.] on the extension of (?) to the case of selfadjoint invertible . and . is reviewed. Some of the results in [.] and [.] are here given different
17#
發(fā)表于 2025-3-24 12:40:11 | 只看該作者
18#
發(fā)表于 2025-3-24 17:15:52 | 只看該作者
The Kobayashi Distance between two Contractions,define the Kobayashi pseudodistance on the closed unit ball .. of .(.), where .(.) is the algebra of all bounded linear operators on the Hubert space .. The main result of the paper asserts the fact the Kobayashi pseudodistance is a true distance on the . of ... Some connections between Pick conditi
19#
發(fā)表于 2025-3-24 22:45:29 | 只看該作者
The Category of Quotient Bornological Spaces,how I arrived in spaces with a boundedness, then in quotient spaces..Exactness is important in algebra. In Functional Analysis, we use exactness. I describe an abelian category . which contains the category . of b-spaces and linear bounded mappings. Its objects are couples ..∣... Morphisms should be
20#
發(fā)表于 2025-3-25 00:43:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
图们市| 蒙山县| 深泽县| 小金县| 宾川县| 新宾| 黄山市| 革吉县| 沙湾县| 台东县| 灵武市| 柳林县| 罗城| 麻江县| 得荣县| 抚顺县| 吉隆县| 周宁县| 西乌| 龙海市| 女性| 汉川市| 建湖县| 姚安县| 原平市| 固始县| 苗栗县| 东台市| 兰考县| 昆明市| 双江| 朝阳区| 平定县| 连云港市| 凤庆县| 镇坪县| 江孜县| 湘潭市| 蓬安县| 渝北区| 托克逊县|