找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Commutation Relations; Commutation Relation Palle E. T. J?rgensen,Robert T. Moore Book 1984 D. Reidel Publishing Company, Dordrech

[復(fù)制鏈接]
樓主: 使沮喪
31#
發(fā)表于 2025-3-27 00:26:06 | 只看該作者
32#
發(fā)表于 2025-3-27 01:19:15 | 只看該作者
33#
發(fā)表于 2025-3-27 07:16:00 | 只看該作者
34#
發(fā)表于 2025-3-27 13:23:14 | 只看該作者
35#
發(fā)表于 2025-3-27 15:27:03 | 只看該作者
Exponentiation and Bounded Perturbation of Operator Lie Algebrasresent chapter contains two exponentiation theorems which are improvements upon results due to the co-authors. It also contains theorems on perturbations of Lie algebras of unbounded operators. These results are entirely new.
36#
發(fā)表于 2025-3-27 19:24:32 | 只看該作者
37#
發(fā)表于 2025-3-28 00:39:24 | 只看該作者
Rigorous Analysis of Some Commutator Identities for Physical Observablesommutation theory with several equivalent conditions introduced by Kato [Kt 1] in his discussion of the canonical commutation relations. We indicate that generalizations of Kato’s conditions can be applied to a number of other commutation-theoretic matters that play an important role in mathematical
38#
發(fā)表于 2025-3-28 04:01:47 | 只看該作者
39#
發(fā)表于 2025-3-28 07:39:01 | 只看該作者
The Finite-Dimensional Commutation Conditionetc. (Here A and B are endomorphisms of a dense domain D in a Banach or locally convex space E.) Below in Section 2A we distinguish several technically different ways in which this condition enters into the development. Section 2B presents examples of differential operators which satisfy the condition.
40#
發(fā)表于 2025-3-28 12:01:08 | 只看該作者
Domain Regularity and Semigroup Commutation Relationsnsional spaces E. or D for which the exponentials in (l) can still be interpreted reasonably in terms of other endomorphisms of these spaces. As is well-known (and essentially recapitulated in Chapter 2), the standard matrix arguments using rearrangements of power series apply equally well to bounded Banach space operators A, B.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武城县| 诏安县| 安泽县| 海口市| 永寿县| 谷城县| 高雄县| 民和| 天长市| 望都县| 大足县| 马公市| 张家口市| 平谷区| 马山县| 曲水县| 磴口县| 江北区| 大兴区| 武清区| 维西| 伊金霍洛旗| 汕头市| 辽中县| 霍山县| 中江县| 香格里拉县| 奉节县| 湄潭县| 彭山县| 德江县| 衡阳市| 乳山市| 淮滨县| 蕉岭县| 会同县| 濮阳市| 阳原县| 松原市| 太保市| 昭通市|