找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Commutation Relations; Commutation Relation Palle E. T. J?rgensen,Robert T. Moore Book 1984 D. Reidel Publishing Company, Dordrech

[復(fù)制鏈接]
樓主: 使沮喪
31#
發(fā)表于 2025-3-27 00:26:06 | 只看該作者
32#
發(fā)表于 2025-3-27 01:19:15 | 只看該作者
33#
發(fā)表于 2025-3-27 07:16:00 | 只看該作者
34#
發(fā)表于 2025-3-27 13:23:14 | 只看該作者
35#
發(fā)表于 2025-3-27 15:27:03 | 只看該作者
Exponentiation and Bounded Perturbation of Operator Lie Algebrasresent chapter contains two exponentiation theorems which are improvements upon results due to the co-authors. It also contains theorems on perturbations of Lie algebras of unbounded operators. These results are entirely new.
36#
發(fā)表于 2025-3-27 19:24:32 | 只看該作者
37#
發(fā)表于 2025-3-28 00:39:24 | 只看該作者
Rigorous Analysis of Some Commutator Identities for Physical Observablesommutation theory with several equivalent conditions introduced by Kato [Kt 1] in his discussion of the canonical commutation relations. We indicate that generalizations of Kato’s conditions can be applied to a number of other commutation-theoretic matters that play an important role in mathematical
38#
發(fā)表于 2025-3-28 04:01:47 | 只看該作者
39#
發(fā)表于 2025-3-28 07:39:01 | 只看該作者
The Finite-Dimensional Commutation Conditionetc. (Here A and B are endomorphisms of a dense domain D in a Banach or locally convex space E.) Below in Section 2A we distinguish several technically different ways in which this condition enters into the development. Section 2B presents examples of differential operators which satisfy the condition.
40#
發(fā)表于 2025-3-28 12:01:08 | 只看該作者
Domain Regularity and Semigroup Commutation Relationsnsional spaces E. or D for which the exponentials in (l) can still be interpreted reasonably in terms of other endomorphisms of these spaces. As is well-known (and essentially recapitulated in Chapter 2), the standard matrix arguments using rearrangements of power series apply equally well to bounded Banach space operators A, B.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥阳县| 泾川县| 肃北| 繁昌县| 湟源县| 深泽县| 滁州市| 浙江省| 葵青区| 郎溪县| 永顺县| 江津市| 文成县| 伊通| 黄平县| 烟台市| 明水县| 栾川县| 白城市| 瓦房店市| 龙井市| 灵川县| 西丰县| 朝阳区| 金阳县| 北宁市| 依兰县| 富民县| 淮南市| 涡阳县| 上犹县| 辽宁省| 汪清县| 尤溪县| 错那县| 奎屯市| 曲阜市| 东源县| 海原县| 岱山县| 郸城县|