找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Algebras; Theory of C*-Algebra Bruce Blackadar Book 2006 Springer-Verlag Berlin Heidelberg 2006 Algebra.C*-algebras.Hilbert space.

[復制鏈接]
樓主: squamous-cell
11#
發(fā)表于 2025-3-23 10:00:52 | 只看該作者
12#
發(fā)表于 2025-3-23 16:09:48 | 只看該作者
C*-Algebras,out functional calculus and spectrum of elements. We consider only complex Banach algebras and C.-algebras; there is a similar theory of real C.-algebras (see, for example, [Goo82], [Sch93], or [Con01]).
13#
發(fā)表于 2025-3-23 18:35:33 | 只看該作者
Further Structure,ecisely the class of C.-algebras with “tractable” representation theory and which therefore has traditionally been regarded as the class of “reasonable” C.-algebras whose structure can be “understood.” Although in recent years the structure theory of C.-algebras has been largely divorced from repres
14#
發(fā)表于 2025-3-24 01:42:38 | 只看該作者
-Theory and Finiteness, the important notion of quasidiagonality, which may be regarded as a type of strong finiteness. Another strong notion of finiteness, stable rank one, is included in a general discussion of stable rank. .-Theory is a vast subject (other parts of the theory are described more comprehensively in [CST0
15#
發(fā)表于 2025-3-24 03:01:14 | 只看該作者
16#
發(fā)表于 2025-3-24 06:30:50 | 只看該作者
https://doi.org/10.1007/3-540-28517-2Algebra; C*-algebras; Hilbert space; K-theory; Volume; non-commutative topology; operator algebras; von Neu
17#
發(fā)表于 2025-3-24 12:39:17 | 只看該作者
18#
發(fā)表于 2025-3-24 18:55:20 | 只看該作者
19#
發(fā)表于 2025-3-24 22:23:26 | 只看該作者
Operators on Hilbert Space,We briefly review the most important and relevant structure facts about Hilbert space.
20#
發(fā)表于 2025-3-25 01:50:00 | 只看該作者
Von Neumann Algebras,Recall (I.9) that a von Neumann algebra is a .-subalgebra . of .(.) for a Hilbert space ., satisfying . = .. A von Neumann algebra is unital, weakly closed, and contains an abundance of projections.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
汉沽区| 崇州市| 习水县| 碌曲县| 上虞市| 廊坊市| 亚东县| 台中县| 怀集县| 府谷县| 招远市| 安丘市| 德令哈市| 宁都县| 梅州市| 井研县| 永康市| 大连市| 金川县| 揭东县| 石城县| 阿拉尔市| 马山县| 固安县| 仙居县| 九龙坡区| 阿拉善左旗| 开封县| 江都市| 崇文区| 麻栗坡县| 山阴县| 科技| 和龙市| 闽侯县| 北京市| 太和县| 寻乌县| 岳阳市| 永仁县| 黔江区|