找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operational Calculus; A Theory of Hyperfun K. Yosida Book 1984 Springer Science+Business Media New York 1984 Derivative.Finite.Hyperfunktio

[復制鏈接]
查看: 6977|回復: 41
樓主
發(fā)表于 2025-3-21 16:57:03 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Operational Calculus
副標題A Theory of Hyperfun
編輯K. Yosida
視頻videohttp://file.papertrans.cn/702/701999/701999.mp4
叢書名稱Applied Mathematical Sciences
圖書封面Titlebook: Operational Calculus; A Theory of Hyperfun K. Yosida Book 1984 Springer Science+Business Media New York 1984 Derivative.Finite.Hyperfunktio
描述In the end of the last century, Oliver Heaviside inaugurated an operational calculus in connection with his researches in electromagnetic theory. In his operational calculus, the operator of differentiation was denoted by the symbol "p". The explanation of this operator p as given by him was difficult to understand and to use, and the range of the valid- ity of his calculus remains unclear still now, although it was widely noticed that his calculus gives correct results in general. In the 1930s, Gustav Doetsch and many other mathematicians began to strive for the mathematical foundation of Heaviside‘s operational calculus by virtue of the Laplace transform -pt e f(t)dt. ( However, the use of such integrals naturally confronts restrictions con- cerning the growth behavior of the numerical function f(t) as t ~ ~. At about the midcentury, Jan Mikusinski invented the theory of con- volution quotients, based upon the Titchmarsh convolution theorem: If f(t) and get) are continuous functions defined on [O,~) such that the convolution f~ f(t-u)g(u)du =0, then either f(t) =0 or get) =0 must hold. The convolution quotients include the operator of differentiation "s" and related operators. Mi
出版日期Book 1984
關鍵詞Derivative; Finite; Hyperfunktion; Identity; Operatorenrechnung; algebra; calculus; differential equation; e
版次1
doihttps://doi.org/10.1007/978-1-4612-1118-1
isbn_softcover978-0-387-96047-0
isbn_ebook978-1-4612-1118-1Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer Science+Business Media New York 1984
The information of publication is updating

書目名稱Operational Calculus影響因子(影響力)




書目名稱Operational Calculus影響因子(影響力)學科排名




書目名稱Operational Calculus網(wǎng)絡公開度




書目名稱Operational Calculus網(wǎng)絡公開度學科排名




書目名稱Operational Calculus被引頻次




書目名稱Operational Calculus被引頻次學科排名




書目名稱Operational Calculus年度引用




書目名稱Operational Calculus年度引用學科排名




書目名稱Operational Calculus讀者反饋




書目名稱Operational Calculus讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:55:27 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:46:45 | 只看該作者
Introduction of the Operator h Through the Convolution Ring Ce in the .; we shall denote the class of those functions by C[0,∞) or simply by the letter C. The convolution of two functions a = a(t) and b = b(t) of . is defined by . and we have PROPOSITION 1. a*b belongs to .; i.e., a*b(t) is a continuous function defined on [0, ∞).
地板
發(fā)表于 2025-3-22 04:41:26 | 只看該作者
5#
發(fā)表于 2025-3-22 11:02:30 | 只看該作者
Heat Equationdenote the ., c the ., and ρ the . of the bar. Furthermore, let the lateral surface of the bar be perfectly insulated so that heat can flow in and flow out only through the ends of the bar. If we denote by z(λ,t) the temperature at the point of the bar at abcissa λ at the instant t, then the heat equation in the bar is
6#
發(fā)表于 2025-3-22 13:42:13 | 只看該作者
7#
發(fā)表于 2025-3-22 20:24:51 | 只看該作者
8#
發(fā)表于 2025-3-23 00:26:23 | 只看該作者
Introduction of the Operator s Through the Ring CHLet ..then,for any k = h.∈H and f ∈c,we have ..
9#
發(fā)表于 2025-3-23 05:11:42 | 只看該作者
10#
發(fā)表于 2025-3-23 05:40:00 | 只看該作者
Fractional Powers of Hyperfunctions h, s and These functions are respectively defined by Euler’s* integrals:
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
唐河县| 宁安市| 长兴县| 太原市| 承德县| 大英县| 织金县| 尤溪县| 三门峡市| 丁青县| 南皮县| 阳城县| 旌德县| 丰台区| 台安县| 平陆县| 额尔古纳市| 加查县| 确山县| 南康市| 朝阳市| 岳池县| 内乡县| 永年县| 红安县| 青海省| 仪征市| 黄山市| 阿勒泰市| 奉节县| 泌阳县| 桃园市| 沅江市| 肥乡县| 华蓥市| 师宗县| 临猗县| 蒙城县| 通榆县| 灌阳县| 阿瓦提县|