找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Open Problems in Spectral Dimensionality Reduction; Harry Strange,Reyer Zwiggelaar Book 2014 The Author(s) 2014 Big Data.Machine Learning.

[復制鏈接]
查看: 17200|回復: 39
樓主
發(fā)表于 2025-3-21 17:59:14 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Open Problems in Spectral Dimensionality Reduction
編輯Harry Strange,Reyer Zwiggelaar
視頻videohttp://file.papertrans.cn/702/701826/701826.mp4
概述Provides a clear and concise overview of spectral dimensionality reduction.Offers uniquely practical knowledge without requiring a background in the area.Suggests interesting starting points for futur
叢書名稱SpringerBriefs in Computer Science
圖書封面Titlebook: Open Problems in Spectral Dimensionality Reduction;  Harry Strange,Reyer Zwiggelaar Book 2014 The Author(s) 2014 Big Data.Machine Learning.
描述The last few years have seen a great increase in the amount of data available to scientists, yet many of the techniques used to analyse this data cannot cope with such large datasets. Therefore, strategies need to be employed as a pre-processing step to reduce the number of objects or measurements whilst retaining important information. Spectral dimensionality reduction is one such tool for the data processing pipeline. Numerous algorithms and improvements have been proposed for the purpose of performing spectral dimensionality reduction, yet there is still no gold standard technique. This book provides a survey and reference aimed at advanced undergraduate and postgraduate students as well as researchers, scientists, and engineers in a wide range of disciplines. Dimensionality reduction has proven useful in a wide range of problem domains and so this book will be applicable to anyone with a solid grounding in statistics and computer science seeking to apply spectral dimensionality to their work.
出版日期Book 2014
關(guān)鍵詞Big Data; Machine Learning; Manifold Learning Algorithms; Nonlinear Dimensionality Reduction (NLDR); Pri
版次1
doihttps://doi.org/10.1007/978-3-319-03943-5
isbn_softcover978-3-319-03942-8
isbn_ebook978-3-319-03943-5Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s) 2014
The information of publication is updating

書目名稱Open Problems in Spectral Dimensionality Reduction影響因子(影響力)




書目名稱Open Problems in Spectral Dimensionality Reduction影響因子(影響力)學科排名




書目名稱Open Problems in Spectral Dimensionality Reduction網(wǎng)絡(luò)公開度




書目名稱Open Problems in Spectral Dimensionality Reduction網(wǎng)絡(luò)公開度學科排名




書目名稱Open Problems in Spectral Dimensionality Reduction被引頻次




書目名稱Open Problems in Spectral Dimensionality Reduction被引頻次學科排名




書目名稱Open Problems in Spectral Dimensionality Reduction年度引用




書目名稱Open Problems in Spectral Dimensionality Reduction年度引用學科排名




書目名稱Open Problems in Spectral Dimensionality Reduction讀者反饋




書目名稱Open Problems in Spectral Dimensionality Reduction讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:09:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:27:51 | 只看該作者
地板
發(fā)表于 2025-3-22 07:41:53 | 只看該作者
Spectral Dimensionality Reduction,In this chapter a common mathematical framework is provided which forms the basis for subsequent chapters. Generic aspects are covered, after which specific dimensionality reduction approaches are briefly described.
5#
發(fā)表于 2025-3-22 09:55:33 | 只看該作者
Postscript,In this “postscript” a number of aspects are discussed which include how to measure success, non-spectral dimensionality techniques, and also available implementations. The chapter concludes with future research considerations.
6#
發(fā)表于 2025-3-22 12:57:18 | 只看該作者
Modelling the Manifold, graphs, and automatic estimation of relevant parameters; how manifold modelling techniques deal with various topologies of the data; and the problem of noise. Each of these aspects are supported by an illustrative example. The interaction between these key issues is also discussed.
7#
發(fā)表于 2025-3-22 20:47:09 | 只看該作者
Intrinsic Dimensionality,nvalues and also local and global aspects of the data. In addition, limitations of existing dimensionality reduction approaches are discussed, especially with respect to the range of possible embedding dimensions and reduced performance at higher embedding dimensionalities.
8#
發(fā)表于 2025-3-22 21:15:24 | 只看該作者
9#
發(fā)表于 2025-3-23 04:42:23 | 只看該作者
10#
發(fā)表于 2025-3-23 07:37:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 10:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
庄河市| 奇台县| 安国市| 涞源县| 东明县| 新营市| 阳江市| 锡林浩特市| 卢氏县| 台湾省| 福清市| 湖口县| 茌平县| 黔江区| 隆化县| 临洮县| 满洲里市| 丰原市| 宁波市| 金寨县| 栖霞市| 古丈县| 乐陵市| 苍南县| 如皋市| 高尔夫| 芒康县| 山东省| 孝义市| 马公市| 深圳市| 桂东县| 图们市| 高邑县| 白玉县| 通州市| 都昌县| 普宁市| 阿合奇县| 渑池县| 会昌县|