找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: One-Factorizations; W. D. Wallis Book 1997 Springer Science+Business Media Dordrecht 1997 Matching.graph theory.graphs.mathematics.combina

[復(fù)制鏈接]
樓主: decoction
31#
發(fā)表于 2025-3-27 00:19:53 | 只看該作者
32#
發(fā)表于 2025-3-27 02:00:05 | 只看該作者
Walks, Paths and Cycles,. A . is a walk in which no edge is repeated. A . is a walk in which no vertex is repeated; the . of a path is its number of edges. A walk is . when the first and last vertices, .. and .., are equal. A . of length . is a closed simple walk of length ., . ≥ 3, in which the vertices .., .., ..., x. are all different.
33#
發(fā)表于 2025-3-27 08:29:36 | 只看該作者
34#
發(fā)表于 2025-3-27 11:01:55 | 只看該作者
35#
發(fā)表于 2025-3-27 16:14:09 | 只看該作者
36#
發(fā)表于 2025-3-27 21:12:14 | 只看該作者
37#
發(fā)表于 2025-3-28 00:36:57 | 只看該作者
38#
發(fā)表于 2025-3-28 04:34:24 | 只看該作者
Graphs,Any reader of this book will have some acquaintance with graph theory. However it seems advisable to have an introductory chapter, not only for completeness, but also because writers in this area differ on fundamental definitions: it is necessary to establish our version of the terminology.
39#
發(fā)表于 2025-3-28 08:44:26 | 只看該作者
One-Factors and One-Factorizations,If . is any graph, then a . or . of . is a subgraph with vertex-set . (.). A . of . is a set of factors of . which are pairwise . no two have a common edge —and whose union is all of ..
40#
發(fā)表于 2025-3-28 12:50:33 | 只看該作者
Orthogonal One-Factorizations,There are a number of applications of one-factorizations in the theory of combinatorial designs. In general this topic is too big to discuss here, but we shall explore a couple of examples. In this chapter we look at the applications concerning Latin squares; one-factorizations and block designs are discussed in Chapter 9.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巧家县| 呼图壁县| 怀化市| 墨脱县| 康平县| 五大连池市| 湘阴县| 武清区| 广宁县| 长沙市| 夹江县| 连南| 曲周县| 天津市| 阜平县| 平安县| 泸西县| 永胜县| 周宁县| 白沙| 长沙县| 读书| 修文县| 望城县| 木里| 大余县| 若羌县| 通辽市| 轮台县| 桐城市| 会宁县| 桐柏县| 临汾市| 高青县| 台江县| 夹江县| 长宁县| 宁远县| 常宁市| 莱州市| 安义县|