找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: On the Local Structure of Morita and Rickard Equivalences between Brauer Blocks; Lluís Puig Carreres Book 1999 Springer Basel AG 1999 Equi

[復(fù)制鏈接]
樓主: DUCT
31#
發(fā)表于 2025-3-27 00:21:35 | 只看該作者
32#
發(fā)表于 2025-3-27 03:56:48 | 只看該作者
33#
發(fā)表于 2025-3-27 05:27:07 | 只看該作者
Hecke ,,-interior algebras and noninjective induction,hat it includes remarks on Higman envelopes which were not needed there. Let . and . be finite groups, .. a subgroup of . × . and .. a ..-interior algebra; ., we call the .-interior algebra.. associated with ., .. and ..; for a suitable choice of .. and .., this .-interior algebra extends to the . b
34#
發(fā)表于 2025-3-27 10:02:17 | 只看該作者
Brauer sections in basic Hecke ,,-interior algebras,lary 14.21 and 15.7.1). In this section we analyze a particular kind of local tracing triples on ., .. and .’ (cf. 16.4) which occurs without exception in the Hecke .-interior algebras associated with the basic Rickard equivalences between blocks introduced in Section 19 below. Precisely, we say tha
35#
發(fā)表于 2025-3-27 16:44:18 | 只看該作者
Rickard equivalences between Brauer blocks,, . and .’ blocks of . and .’ respectively, and .. an indecomposable .(. × .’)-module which has projective restrictions to .(. × 1) and to .(1 × .’), and is associated with . ? (.’)° (recall that (.’)° is the image of .’ by the antipodal isomorphism .’ ? (.’)°). Respectively denote by Mod. and Mod.
36#
發(fā)表于 2025-3-27 18:12:51 | 只看該作者
37#
發(fā)表于 2025-3-27 22:27:35 | 只看該作者
978-3-0348-9732-7Springer Basel AG 1999
38#
發(fā)表于 2025-3-28 02:31:02 | 只看該作者
On the Local Structure of Morita and Rickard Equivalences between Brauer Blocks978-3-0348-8693-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
39#
發(fā)表于 2025-3-28 06:54:02 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/o/image/701181.jpg
40#
發(fā)表于 2025-3-28 11:42:18 | 只看該作者
https://doi.org/10.1007/978-3-0348-8693-2Equivalence; Finite; Group theory; Gruppentheorie; Invariant; algebra; classification; group; set
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 12:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
四子王旗| 武胜县| 海宁市| 许昌市| 阳山县| 交城县| 民县| 商丘市| 太谷县| 丁青县| 柯坪县| 兴和县| 岳阳市| 寿光市| 象州县| 汝阳县| 青州市| 忻州市| 奈曼旗| 南溪县| 鄱阳县| 沁源县| 商洛市| 新邵县| 称多县| 贡觉县| 涿鹿县| 灌阳县| 金昌市| 达拉特旗| 泸定县| 集安市| 新兴县| 修文县| 闻喜县| 保亭| 盘锦市| 兴山县| 井研县| 泾阳县| 青河县|