找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: On the Hypotheses Which Lie at the Bases of Geometry; Bernhard Riemann,Jürgen Jost Book 2016 Springer International Publishing Switzerland

[復制鏈接]
樓主: 相持不下
21#
發(fā)表于 2025-3-25 05:32:08 | 只看該作者
On the Hypotheses Which Lie at the Bases of Geometry
22#
發(fā)表于 2025-3-25 11:08:06 | 只看該作者
23#
發(fā)表于 2025-3-25 15:02:03 | 只看該作者
24#
發(fā)表于 2025-3-25 18:19:17 | 只看該作者
25#
發(fā)表于 2025-3-25 22:58:42 | 只看該作者
2365-9963 aders from other disciplines or those with an interest in physics or philosophy will find this work both appealing and insightful.978-3-319-79880-6978-3-319-26042-6Series ISSN 2365-9963 Series E-ISSN 2365-9971
26#
發(fā)表于 2025-3-26 02:56:25 | 只看該作者
Introduction, Alexander Grothendieck on the systematic unification of algebraic geometry and arithmetic. We are talking here of Bernhard Riemann’s “.” (“.”), and this short script, written in 1854, but only published in 1868 after Riemann’s death, whose wide ranging effects even take it beyond these works. This
27#
發(fā)表于 2025-3-26 04:27:52 | 只看該作者
Historical Introduction,it is like any other, and isotropic, that is, in all directions it looks the same. No point and no direction is in any way distinguished. Aristotle (384–322 .) in contrast thought of the world as a collection of places. According to him, the location of an object is determined by its bounding surfac
28#
發(fā)表于 2025-3-26 11:36:01 | 只看該作者
Presentation of the Text, certain natural constraints). This structure can then be restricted on the one hand by conditions of simplicity and on the other hand by empirical testing if it is supposed to describe the actual physical space. Riemann then describes the quantitative structure by a so-called metric tensor, which f
29#
發(fā)表于 2025-3-26 15:02:37 | 只看該作者
30#
發(fā)表于 2025-3-26 17:07:12 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 04:00
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
桐庐县| 封开县| 九龙城区| 黄大仙区| 庆元县| 盱眙县| 自治县| 栾川县| 河东区| 延津县| 郯城县| 孝义市| 镇康县| 温泉县| 瑞昌市| 尼玛县| 东乡| 清河县| 灵丘县| 长沙市| 临沧市| 定襄县| 新晃| 鱼台县| 鄂托克旗| 略阳县| 满洲里市| 济阳县| 黎平县| 沧州市| 思茅市| 西贡区| 尚志市| 西峡县| 修文县| 千阳县| 乌什县| 新疆| 武隆县| 汉阴县| 中宁县|