找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: On Thom Spectra, Orientability, and Cobordism; Yuli B. Rudyak Book 1998 Springer-Verlag Berlin Heidelberg 1998 Kobordismus mit Singularit?

[復(fù)制鏈接]
樓主: COAX
21#
發(fā)表于 2025-3-25 06:03:40 | 只看該作者
(Co)bordism with Singularities,demonstrate that (co)bordism with singularities establishes a big source of interesting (co)homology theories and, in particular, enables us to construct cohomology theories with prescribed properties (e.g., realizing certain formal groups, etc.)
22#
發(fā)表于 2025-3-25 08:42:03 | 只看該作者
23#
發(fā)表于 2025-3-25 12:06:09 | 只看該作者
Introduction, Moreover, when I quote a result which I do not prove here, I quote the original paper and a monograph where this result is treated as well. There are also occasional remarks containing historical and bibliographical comments, additional results not included in the text, exercises, etc.
24#
發(fā)表于 2025-3-25 17:55:51 | 只看該作者
25#
發(fā)表于 2025-3-25 20:02:26 | 只看該作者
Thom Spectra,ered in Lewis–May–Steinberger [1]. Now it is clear that a proper theory of Thom spaces occurs in the context of sectioned spherical fibrations, and so we pay a lot of attention to sectioned fibrations; they are discussed at the beginning of the chapter.
26#
發(fā)表于 2025-3-26 02:31:55 | 只看該作者
Book 1998f cobordism since R. Stong‘s encyclopaedic and influential notes of a generation ago. It concentrates on Thom spaces (spectra), orientability theory and (co)bordism theory (including (co)bordism with singularities and, in particular, Morava K-theories), framed by (co)homology theories and spectra...
27#
發(fā)表于 2025-3-26 05:54:50 | 只看該作者
5樓
28#
發(fā)表于 2025-3-26 08:52:02 | 只看該作者
5樓
29#
發(fā)表于 2025-3-26 13:10:01 | 只看該作者
5樓
30#
發(fā)表于 2025-3-26 19:00:25 | 只看該作者
6樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴业县| 许昌县| 和田县| 会理县| 咸阳市| 扎鲁特旗| 囊谦县| 乌审旗| 德兴市| 杂多县| 龙江县| 沂源县| 西林县| 乾安县| 广灵县| 南投市| 牟定县| 沙洋县| 扶余县| 安多县| 全椒县| 太湖县| 那曲县| 全椒县| 宜州市| 翼城县| 扎囊县| 斗六市| 锡林郭勒盟| 霍林郭勒市| 宁明县| 蒲江县| 清河县| 怀远县| 新邵县| 修文县| 丁青县| 临高县| 自贡市| 张家界市| 古浪县|