找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Informat; Fabian Guignard Book 2022 The Editor

[復(fù)制鏈接]
查看: 24894|回復(fù): 43
樓主
發(fā)表于 2025-3-21 19:20:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Informat
編輯Fabian Guignard
視頻videohttp://file.papertrans.cn/702/701077/701077.mp4
概述Follows a comprehensive end-to-end data analysis workflow.Covers concrete applications in environmental modelling and renewable energy assessement.Benefits environmental analysts and researchers worki
叢書(shū)名稱Springer Theses
圖書(shū)封面Titlebook: On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Informat;  Fabian Guignard Book 2022 The Editor
描述.The gathering and storage of data indexed in space and time are experiencing unprecedented growth, demanding for advanced and adapted tools to analyse them. This thesis deals with the exploration and modelling of complex high-frequency and non-stationary spatio-temporal data. It proposes an efficient framework in modelling with machine learning algorithms spatio-temporal fields measured on irregular monitoring networks, accounting for high dimensional input space and large data sets. The uncertainty quantification is enabled by specifying this framework with the extreme learning machine, a particular type of artificial neural network for which analytical results, variance estimation and confidence intervals are developed. Particular attention is also paid to a highly versatile exploratory data analysis tool based on information theory, the Fisher-Shannon analysis, which can be used to assess the complexity of distributional properties of temporal, spatial and spatio-temporal data sets. Examples of the proposed methodologies are concentrated on data from environmental sciences, with an emphasis on wind speed modelling in complex mountainous terrain and the resulting renewable energ
出版日期Book 2022
關(guān)鍵詞Machine Learning; Deep Learning; Uncertainty Quantification; Model Variance; Artificial Neural Network; S
版次1
doihttps://doi.org/10.1007/978-3-030-95231-0
isbn_softcover978-3-030-95233-4
isbn_ebook978-3-030-95231-0Series ISSN 2190-5053 Series E-ISSN 2190-5061
issn_series 2190-5053
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Informat影響因子(影響力)




書(shū)目名稱On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Informat影響因子(影響力)學(xué)科排名




書(shū)目名稱On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Informat網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Informat網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Informat被引頻次




書(shū)目名稱On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Informat被引頻次學(xué)科排名




書(shū)目名稱On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Informat年度引用




書(shū)目名稱On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Informat年度引用學(xué)科排名




書(shū)目名稱On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Informat讀者反饋




書(shū)目名稱On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Informat讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:04:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:47:52 | 只看該作者
Fabian Guignarda’s art and the work of other modern twentieth-century artists, considering its links to Surrealism, Pop Art and the Mexican Muralism Movement. Parra exhibited in open-air art fairs, museums and cultural centre978-3-030-38409-8978-3-030-38407-4
地板
發(fā)表于 2025-3-22 04:40:45 | 只看該作者
5#
發(fā)表于 2025-3-22 12:07:41 | 只看該作者
is created by using a three-dimensional (3D)-CT volume analyzer Synapse VINCENT (Fujifilm Co., Tokyo, Japan), which makes surgical simulation of sublobar resection based on bronchial or vascular structures, and the appropriate area of segmentectomy is decided based on surgical margin. Under general
6#
發(fā)表于 2025-3-22 15:59:35 | 只看該作者
Fabian Guignardtheir accuracy remains variable and somewhat subjective. More recently, fluorescent imaging with indocyanine green (ICG) has shown to objectively identify the potentially ischemic bowel tissue, thereby reducing the rates of failure of anastomosis. Quantitative assessment of the fluorescent perfusion
7#
發(fā)表于 2025-3-22 19:51:08 | 只看該作者
8#
發(fā)表于 2025-3-22 21:41:56 | 只看該作者
Fabian Guignardtabilities in the displacement field disappear for three-dimensional examples at large strains. In addition, previously unknown limitations of the enhanced peridynamic correspondence formulation are shown within the numerical examples. These are slight, non-physical, deviations in the deformation fi
9#
發(fā)表于 2025-3-23 03:25:52 | 只看該作者
Fabian Guignardtabilities in the displacement field disappear for three-dimensional examples at large strains. In addition, previously unknown limitations of the enhanced peridynamic correspondence formulation are shown within the numerical examples. These are slight, non-physical, deviations in the deformation fi
10#
發(fā)表于 2025-3-23 05:31:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 02:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
互助| 民权县| 永川市| 开江县| 新晃| 桐城市| 商都县| 通河县| 安康市| 吉隆县| 武定县| 水城县| 会宁县| 麦盖提县| 陵水| 曲水县| 蕲春县| 宜黄县| 安达市| 乌拉特前旗| 平罗县| 阿克陶县| 寿光市| 神池县| 平武县| 樟树市| 乐都县| 南昌县| 临潭县| 交城县| 寿光市| 广饶县| 西平县| 巴塘县| 昌吉市| 吴旗县| 策勒县| 景洪市| 余干县| 赤峰市| 靖远县|