找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: On Some Applications of Diophantine Approximations; A translation of C.L Umberto Zannier Book 2014 The Editor(s) (if applicable) and The Au

[復(fù)制鏈接]
查看: 53852|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:31:56 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱On Some Applications of Diophantine Approximations
副標(biāo)題A translation of C.L
編輯Umberto Zannier
視頻videohttp://file.papertrans.cn/702/701075/701075.mp4
概述Presents for the first time in English a landmark paper by Siegel which introduced most important ideas in the realm of Diophantine approximation and its applications.Presents the ideas of Siegel in o
叢書名稱Publications of the Scuola Normale Superiore
圖書封面Titlebook: On Some Applications of Diophantine Approximations; A translation of C.L Umberto Zannier Book 2014 The Editor(s) (if applicable) and The Au
描述This book consists mainly of the translation, by C. Fuchs, of the 1929 landmark paper "über einige Anwendungen diophantischer Approximationen" by C.L. Siegel. The paper contains proofs of most important results in transcendence theory and diophantine analysis, notably Siegel’s celebrated theorem on integral points on algebraic curves. Many modern versions of Siegel’s proof have appeared, but none seem to faithfully reproduce all features of the original one.?This translation makes Siegel’s original ideas and proofs available for the first time in English. The volume also contains the original version of the paper (in German) and an article by the translator and U. Zannier, commenting on some aspects of the evolution of this field following Siegel’s paper. To end, it presents three modern proofs of Siegel’s theorem on integral points.
出版日期Book 2014
關(guān)鍵詞Siegel‘s theorem; diophantine analysis; transcendence theory
版次1
doihttps://doi.org/10.1007/978-88-7642-520-2
isbn_softcover978-88-7642-519-6
isbn_ebook978-88-7642-520-2Series ISSN 2239-1460 Series E-ISSN 2532-1668
issn_series 2239-1460
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱On Some Applications of Diophantine Approximations影響因子(影響力)




書目名稱On Some Applications of Diophantine Approximations影響因子(影響力)學(xué)科排名




書目名稱On Some Applications of Diophantine Approximations網(wǎng)絡(luò)公開度




書目名稱On Some Applications of Diophantine Approximations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱On Some Applications of Diophantine Approximations被引頻次




書目名稱On Some Applications of Diophantine Approximations被引頻次學(xué)科排名




書目名稱On Some Applications of Diophantine Approximations年度引用




書目名稱On Some Applications of Diophantine Approximations年度引用學(xué)科排名




書目名稱On Some Applications of Diophantine Approximations讀者反饋




書目名稱On Some Applications of Diophantine Approximations讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:47:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:47:44 | 只看該作者
地板
發(fā)表于 2025-3-22 08:35:08 | 只看該作者
5#
發(fā)表于 2025-3-22 12:00:50 | 只看該作者
978-88-7642-519-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
6#
發(fā)表于 2025-3-22 14:32:22 | 只看該作者
On Some Applications of Diophantine Approximations978-88-7642-520-2Series ISSN 2239-1460 Series E-ISSN 2532-1668
7#
發(fā)表于 2025-3-22 17:58:28 | 只看該作者
Publications of the Scuola Normale Superiorehttp://image.papertrans.cn/o/image/701075.jpg
8#
發(fā)表于 2025-3-23 00:56:44 | 只看該作者
https://doi.org/10.1007/978-88-7642-520-2Siegel‘s theorem; diophantine analysis; transcendence theory
9#
發(fā)表于 2025-3-23 04:12:29 | 只看該作者
On some applications of Diophantine approximations, two objects, gives rise to a generalization of the Euclidean algorithm, which by investigations due to D., H. and M. turned out to be the source of important arithmetic laws. In particular it implies a statement on how precisely the number 0 can be at least approximated by a linear combination
10#
發(fā)表于 2025-3-23 08:37:18 | 只看該作者
,über einige Anwendungen diophantischer Approximationen,sind, enth?lt eine Verallgemeinerung des euklidischen Algorithmus, welche sich durch die Untersuchungen von D., H. und M. als die Quelle wichtiger arithmetischer Gesetze erwiesen hat. Sie liefert speziell eine Aussage darüber, wie genau sich . die Zahl o durch eine lineare Verbindung
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 07:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
皮山县| 锦屏县| 张家口市| 博罗县| 湄潭县| 当涂县| 富民县| 威信县| 石林| 新宾| 五家渠市| 尚义县| 天津市| 桂林市| 阿勒泰市| 高碑店市| 黔西县| 肥东县| 大港区| 瑞金市| 秀山| 青川县| 青冈县| 镇赉县| 弥渡县| 公主岭市| 浦县| 油尖旺区| 勃利县| 岳阳市| 噶尔县| 康平县| 西平县| 防城港市| 天津市| 五指山市| 莒南县| 桂阳县| 邵阳县| 梅河口市| 无极县|