找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: On Intuitionistic Fuzzy Sets Theory; Krassimir T. Atanassov Book 2012 Springer-Verlag Berlin Heidelberg 2012 Fuzziness.Fuzzy Logic.Fuzzy S

[復(fù)制鏈接]
樓主: 解毒藥
11#
發(fā)表于 2025-3-23 12:58:18 | 只看該作者
12#
發(fā)表于 2025-3-23 17:11:32 | 只看該作者
13#
發(fā)表于 2025-3-23 18:49:01 | 只看該作者
Concluding Remarks, they did not have anything against the three- and multi-valued logics of Jan Lukasiewicz. Thus I reached the conclusion that the reason for the then negative attitude towards fuzzy sets was hidden in the presence of the [0, 1] interval as the set of the fuzzy sets’ membership function (see, e.g, [3
14#
發(fā)表于 2025-3-23 23:50:44 | 只看該作者
978-3-642-44259-9Springer-Verlag Berlin Heidelberg 2012
15#
發(fā)表于 2025-3-24 02:57:42 | 只看該作者
On Intuitionistic Fuzzy Sets Theory978-3-642-29127-2Series ISSN 1434-9922 Series E-ISSN 1860-0808
16#
發(fā)表于 2025-3-24 06:38:39 | 只看該作者
Krassimir T. AtanassovState-of-art research on Intuitionistic Fuzzy Sets Theory.Comprehensive report of the past twelve years research of the author (and not only) on intuitionistic fuzzy sets theory.Written by a leading e
17#
發(fā)表于 2025-3-24 11:51:16 | 只看該作者
Operations and Relations over IFSs,In this Section, operations and relations over IFSs extending the definitions of the relations and operations over fuzzy sets (see e.g. [218, 297, 301, 612]) are introduced. Conversely, the fuzzy sets relations and operations will turn out to be particular cases of these new definitions.
18#
發(fā)表于 2025-3-24 16:59:27 | 只看該作者
Extended Modal Operators,Following [18, 19, 39], we construct an operator which represents both operators □ from (4.1) and . from (4.2). It has no analogue in the ordinary modal logic, but the author hopes that the search for such an analogue in modal logic will be interesting.
19#
發(fā)表于 2025-3-24 20:01:05 | 只看該作者
20#
發(fā)表于 2025-3-24 23:42:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绿春县| 正镶白旗| 阿图什市| 绿春县| 永和县| 山东省| 榆中县| 逊克县| 长垣县| 宁德市| 普格县| 边坝县| 杂多县| 柳江县| 璧山县| 麻城市| 梁山县| 岚皋县| 四会市| 瑞安市| 徐水县| 凉山| 天峨县| 和龙市| 婺源县| 邯郸市| 丹寨县| 沂南县| 宣威市| 克东县| 邓州市| 喀什市| 明溪县| 乃东县| 周至县| 东丰县| 社旗县| 龙口市| 邵阳市| 绥德县| 南木林县|