找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: On Hilbert‘s Sixth Problem; Newton C. A. da Costa,Francisco Antonio Doria Book 2022 Springer Nature Switzerland AG 2022 Physics Formal Phi

[復(fù)制鏈接]
查看: 35583|回復(fù): 56
樓主
發(fā)表于 2025-3-21 16:22:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱On Hilbert‘s Sixth Problem
編輯Newton C. A. da Costa,Francisco Antonio Doria
視頻videohttp://file.papertrans.cn/702/701002/701002.mp4
概述New work by two of the most renowned philosophers from Brazil.Explores which mathematical universe is required for the description of concrete physical events.Stresses that classical mechanics in its
叢書名稱Synthese Library
圖書封面Titlebook: On Hilbert‘s Sixth Problem;  Newton C. A. da Costa,Francisco Antonio Doria Book 2022 Springer Nature Switzerland AG 2022 Physics Formal Phi
描述This book explores the premise that a physical theory is an interpretation of the analytico–canonical formalism. Throughout the text, the investigation stresses that classical mechanics in its Lagrangian formulation is the formal backbone of theoretical physics. The authors start from a presentation of the analytico–canonical formalism for classical mechanics, and its applications in electromagnetism, Schr?dinger‘s quantum mechanics, and field theories such as general relativity and gauge field theories, up to the Higgs mechanism..The analysis uses the main criterion used by physicists for a theory: to formulate a physical theory we write down a Lagrangian for it. A physical theory is a particular instance of the Lagrangian functional. So, there is already an unified physical theory. One only has to specify the corresponding Lagrangian (or Lagrangian density); the dynamical equations are the associated Euler–Lagrange equations. The theory of Suppes predicates as the main tool inthe axiomatization and examples from the usual theories in physics. For applications, a whole plethora of results from logic that lead to interesting, and sometimes unexpected, consequences..This volume look
出版日期Book 2022
關(guān)鍵詞Physics Formal Philosophy; Foundation Physics Philosophy Hilbert; G?del Theorem Philosophy; analytico–c
版次1
doihttps://doi.org/10.1007/978-3-030-83837-9
isbn_softcover978-3-030-83839-3
isbn_ebook978-3-030-83837-9Series ISSN 0166-6991 Series E-ISSN 2542-8292
issn_series 0166-6991
copyrightSpringer Nature Switzerland AG 2022
The information of publication is updating

書目名稱On Hilbert‘s Sixth Problem影響因子(影響力)




書目名稱On Hilbert‘s Sixth Problem影響因子(影響力)學(xué)科排名




書目名稱On Hilbert‘s Sixth Problem網(wǎng)絡(luò)公開度




書目名稱On Hilbert‘s Sixth Problem網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱On Hilbert‘s Sixth Problem被引頻次




書目名稱On Hilbert‘s Sixth Problem被引頻次學(xué)科排名




書目名稱On Hilbert‘s Sixth Problem年度引用




書目名稱On Hilbert‘s Sixth Problem年度引用學(xué)科排名




書目名稱On Hilbert‘s Sixth Problem讀者反饋




書目名稱On Hilbert‘s Sixth Problem讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:38:43 | 只看該作者
On Hilbert‘s Sixth Problem978-3-030-83837-9Series ISSN 0166-6991 Series E-ISSN 2542-8292
板凳
發(fā)表于 2025-3-22 04:14:03 | 只看該作者
地板
發(fā)表于 2025-3-22 08:32:42 | 只看該作者
5#
發(fā)表于 2025-3-22 09:34:46 | 只看該作者
Lagrangian FormulationLet’s consider the (very general) example. Consider the motion of a system of . material points.
6#
發(fā)表于 2025-3-22 14:54:56 | 只看該作者
Hamilton’s EquationsAgain we meet our notational convention for the indices of vector-like objects that sort of behave like tangent vectors to a curve of coordinates ..(.) with components.
7#
發(fā)表于 2025-3-22 20:46:35 | 只看該作者
8#
發(fā)表于 2025-3-23 00:22:46 | 只看該作者
9#
發(fā)表于 2025-3-23 03:58:57 | 只看該作者
From Classical to QuantumWe have sketched here how it is done: take a single particle in 3-space; its Hamilton–Jacobi equation is, from the general Hamilton–Jacobi equation.
10#
發(fā)表于 2025-3-23 07:30:12 | 只看該作者
Field TheoryThe concept stems from a construction based on an infinite coupling of harmonic oscillators (and one later proves that quantized electromagnetism can be seen as a countable infinite collection of harmonic oscillators).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蒙城县| 临西县| 剑河县| 藁城市| 同仁县| 南城县| 合肥市| 惠州市| 东港市| 星座| 高雄市| 卓尼县| 冷水江市| 江永县| 漠河县| 乾安县| 盐津县| 井陉县| 法库县| 江津市| 定结县| 嘉鱼县| 澄迈县| 景洪市| 乐东| 神池县| 无棣县| 周口市| 叙永县| 会东县| 封丘县| 丰镇市| 翁牛特旗| 嘉黎县| 治县。| 朔州市| 陇南市| 长垣县| 天气| 曲阜市| 张家港市|