找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: On Global Univalence Theorems; T. Parthasarathy Book 1983 Springer-Verlag Berlin Heidelberg 1983 Differenzierbare Abbildung.Finite.Funktio

[復制鏈接]
樓主: Fruition
41#
發(fā)表于 2025-3-28 17:45:01 | 只看該作者
42#
發(fā)表于 2025-3-28 18:56:53 | 只看該作者
43#
發(fā)表于 2025-3-29 00:19:44 | 只看該作者
44#
發(fā)表于 2025-3-29 06:00:01 | 只看該作者
Fundamental global univalence results of Gale-Nikaido-Inada,o the problem under consideration. One approach places topological assumptions on the map and the other places further conditions on the Jacobian matrices. We will study the former in the next chapter and the latter in the present chapter.
45#
發(fā)表于 2025-3-29 08:43:16 | 只看該作者
Global univalent results in R2 and R3, assumption that the diagonal entries are identically zero will imply that F is one-one in any open convex region in R.-this result supplements the result obtained by Gale and Nikaido. We can weaken our assumptions in rectangular regions in R. using Garcia-Zangwill‘s result given in the previous chapter.
46#
發(fā)表于 2025-3-29 15:10:24 | 只看該作者
47#
發(fā)表于 2025-3-29 18:34:14 | 只看該作者
Assorted applications of univalence mapping results,distribution is infinitely divisible. In this situation weak N-matrices play an important role. There are various other applications (for example to nonlinear net-work theory) but we will not attempt to exhaust all of them for lack of time and space. [We have already seen a nice application of univalent results in stability theory in chapter VII].
48#
發(fā)表于 2025-3-29 22:02:54 | 只看該作者
Global homeomorphisms between finite dimensional spaces,to More and Rheinboldt and this result will then be used to prove Gale-Nikaido‘s theorem under weaker assumptions. In the last section we will prove a result due to McAuley for light open mappings. We will end this chapter with an old conjecture of Whyburn.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
安泽县| 太保市| 科技| 桃园市| 从江县| 扎鲁特旗| 扬州市| 定远县| 延吉市| 乐清市| 乐亭县| 湟源县| 黄山市| 阿克陶县| 文山县| 邳州市| 宝鸡市| 万年县| 呼图壁县| 桦甸市| 错那县| 广饶县| 五峰| 德兴市| 汕头市| 吴江市| 增城市| 资中县| 吴堡县| 杭锦后旗| 沐川县| 建始县| 望谟县| 灵台县| 万荣县| 建湖县| 孟连| 朝阳市| 泰顺县| 蓬莱市| 平昌县|