找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: On Characters of Finite Groups; Michel Broué Textbook 2017 Springer Nature Singapore Pte Ltd. 2017 Representation theory of groups.BRAUER‘

[復(fù)制鏈接]
查看: 35899|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:20:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱On Characters of Finite Groups
編輯Michel Broué
視頻videohttp://file.papertrans.cn/701/700958/700958.mp4
概述Reveals the beauty of character theory of finite groups.Familiarizes readers with the language of categories.Offers readers broader coverage than books that focus almost exclusively on groups.Includes
叢書名稱Mathematical Lectures from Peking University
圖書封面Titlebook: On Characters of Finite Groups;  Michel Broué Textbook 2017 Springer Nature Singapore Pte Ltd. 2017 Representation theory of groups.BRAUER‘
描述.This book explores the classical and beautiful character theory of finite groups. It does it by using some rudiments of the language of categories. Originally emerging from two courses offered at Peking University (PKU), primarily for third-year students, it is now better suited for graduate courses, and provides broader coverage than books that focus almost exclusively on groups..The book presents the basic tools, notions and theorems of character theory (including a new treatment of the control of fusion and isometries), and introduces readers to the categorical language at several levels. It includes and proves the major results on characteristic zero representations without any assumptions about the base field. The book includes a dedicated chapter on graded representations and applications of polynomial invariants of finite groups, and its closing chapter addresses the more recent notion of the Drinfeld double of a finite group and the corresponding representation of GL_2(Z)..
出版日期Textbook 2017
關(guān)鍵詞Representation theory of groups; BRAUER‘S THEOREM; GRADED REPRESENTATIONS; Drinfeld Double; Characters
版次1
doihttps://doi.org/10.1007/978-981-10-6878-2
isbn_softcover978-981-13-4964-5
isbn_ebook978-981-10-6878-2Series ISSN 2197-4209 Series E-ISSN 2197-4217
issn_series 2197-4209
copyrightSpringer Nature Singapore Pte Ltd. 2017
The information of publication is updating

書目名稱On Characters of Finite Groups影響因子(影響力)




書目名稱On Characters of Finite Groups影響因子(影響力)學(xué)科排名




書目名稱On Characters of Finite Groups網(wǎng)絡(luò)公開度




書目名稱On Characters of Finite Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱On Characters of Finite Groups被引頻次




書目名稱On Characters of Finite Groups被引頻次學(xué)科排名




書目名稱On Characters of Finite Groups年度引用




書目名稱On Characters of Finite Groups年度引用學(xué)科排名




書目名稱On Characters of Finite Groups讀者反饋




書目名稱On Characters of Finite Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:45:42 | 只看該作者
https://doi.org/10.1007/978-981-10-6878-2Representation theory of groups; BRAUER‘S THEOREM; GRADED REPRESENTATIONS; Drinfeld Double; Characters
板凳
發(fā)表于 2025-3-22 02:48:20 | 只看該作者
On Representations,When groups were discovered, during the XIXth century, there were no “abstract groups” (like .). Groups were given as ., and most of the time as acting on roots of polynomials by preserving the algebraic relations between them.
地板
發(fā)表于 2025-3-22 05:11:38 | 只看該作者
5#
發(fā)表于 2025-3-22 08:50:56 | 只看該作者
PLAYING with the BASE FIELD,Let . be a subfield of . which is stable under complex conjugation.
6#
發(fā)表于 2025-3-22 13:48:36 | 只看該作者
Induction, Restriction,Throughout this section, . denotes a finite group, . a subgroup of ., and . is a commutative field. Notice that here we make no assumption about the characteristic of ..
7#
發(fā)表于 2025-3-22 21:05:50 | 只看該作者
8#
發(fā)表于 2025-3-23 00:26:50 | 只看該作者
9#
發(fā)表于 2025-3-23 04:52:29 | 只看該作者
10#
發(fā)表于 2025-3-23 05:49:16 | 只看該作者
Michel BrouéReveals the beauty of character theory of finite groups.Familiarizes readers with the language of categories.Offers readers broader coverage than books that focus almost exclusively on groups.Includes
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赣榆县| 永昌县| 龙游县| 通许县| 汶上县| 新竹市| 景洪市| 军事| 凤台县| 炎陵县| 波密县| 西青区| 平顺县| 若羌县| 天镇县| 明水县| 大城县| 泸定县| 澎湖县| 栾川县| 潢川县| 华坪县| 贵阳市| 洪湖市| 齐齐哈尔市| 社旗县| 东辽县| 永善县| 瑞金市| 安康市| 海宁市| 隆子县| 依安县| 原阳县| 永昌县| 安顺市| 合阳县| 汉沽区| 横山县| 天等县| 大足县|