找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Old and New Aspects in Spectral Geometry; Mircea Craioveanu,Mircea Puta,Themistocles M. Rass Book 2001 Springer Science+Business Media B.V

[復(fù)制鏈接]
查看: 38342|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:06:54 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Old and New Aspects in Spectral Geometry
編輯Mircea Craioveanu,Mircea Puta,Themistocles M. Rass
視頻videohttp://file.papertrans.cn/701/700825/700825.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Old and New Aspects in Spectral Geometry;  Mircea Craioveanu,Mircea Puta,Themistocles M. Rass Book 2001 Springer Science+Business Media B.V
描述It is known that to any Riemannian manifold (M, g ) , with or without boundary, one can associate certain fundamental objects. Among them are the Laplace-Beltrami opera- tor and the Hodge-de Rham operators, which are natural [that is, they commute with the isometries of (M,g)], elliptic, self-adjoint second order differential operators acting on the space of real valued smooth functions on M and the spaces of smooth differential forms on M, respectively. If M is closed, the spectrum of each such operator is an infinite divergent sequence of real numbers, each eigenvalue being repeated according to its finite multiplicity. Spectral Geometry is concerned with the spectra of these operators, also the extent to which these spectra determine the geometry of (M, g) and the topology of M. This problem has been translated by several authors (most notably M. Kac). into the col- loquial question "Can one hear the shape of a manifold?" because of its analogy with the wave equation. This terminology was inspired from earlier results of H. Weyl. It is known that the above spectra cannot completely determine either the geometry of (M , g) or the topology of M. For instance, there are examples of
出版日期Book 2001
關(guān)鍵詞Eigenvalue; Matrix; Matrix Theory; Multilinear Algebra; Riemannian geometry; Riemannian manifold; differen
版次1
doihttps://doi.org/10.1007/978-94-017-2475-3
isbn_ebook978-94-017-2475-3
copyrightSpringer Science+Business Media B.V. 2001
The information of publication is updating

書目名稱Old and New Aspects in Spectral Geometry影響因子(影響力)




書目名稱Old and New Aspects in Spectral Geometry影響因子(影響力)學(xué)科排名




書目名稱Old and New Aspects in Spectral Geometry網(wǎng)絡(luò)公開度




書目名稱Old and New Aspects in Spectral Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Old and New Aspects in Spectral Geometry被引頻次




書目名稱Old and New Aspects in Spectral Geometry被引頻次學(xué)科排名




書目名稱Old and New Aspects in Spectral Geometry年度引用




書目名稱Old and New Aspects in Spectral Geometry年度引用學(xué)科排名




書目名稱Old and New Aspects in Spectral Geometry讀者反饋




書目名稱Old and New Aspects in Spectral Geometry讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:37:43 | 只看該作者
https://doi.org/10.1007/978-94-017-2475-3Eigenvalue; Matrix; Matrix Theory; Multilinear Algebra; Riemannian geometry; Riemannian manifold; differen
板凳
發(fā)表于 2025-3-22 00:30:53 | 只看該作者
Springer Science+Business Media B.V. 2001
地板
發(fā)表于 2025-3-22 05:34:48 | 只看該作者
5#
發(fā)表于 2025-3-22 11:14:34 | 只看該作者
Isospectral Closed Riemannian Manifolds,geometric information. Some useful such functions having applications to spectral geometry are the heat coefficients. These can be made obvious by the method of heat asymptotics. which is discussed below.
6#
發(fā)表于 2025-3-22 16:05:54 | 只看該作者
Spectral Properties of the Laplacians for the de Rham Complex,In Chapters 3 and 4 we have discussed the Laplace-Beltrami operator on functions. If one considers other natural geometric partial differential operators,namely the Hodge-de Rham operators, then as we shall see in Chapter 6 global topological aspects come into play.
7#
發(fā)表于 2025-3-22 20:05:24 | 只看該作者
8#
發(fā)表于 2025-3-22 23:23:04 | 只看該作者
9#
發(fā)表于 2025-3-23 03:21:18 | 只看該作者
10#
發(fā)表于 2025-3-23 08:28:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青川县| 桑日县| 郓城县| 沐川县| 连山| 祥云县| 五台县| 名山县| 东丽区| 南昌市| 临城县| 南投县| 西宁市| 酉阳| 无极县| 正宁县| 琼海市| 若尔盖县| 日喀则市| 楚雄市| 西安市| 甘泉县| 汪清县| 垣曲县| 道孚县| 盐城市| 霸州市| 荣昌县| 密山市| 秦安县| 社旗县| 灵川县| 石河子市| 嫩江县| 大厂| 都昌县| 个旧市| 徐汇区| 色达县| 沙坪坝区| 天津市|