找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Offbeat Integral Geometry on Symmetric Spaces; Valery V. Volchkov,Vitaly V. Volchkov Book 2013 Springer Basel 2013 Pompeiu property.harmon

[復(fù)制鏈接]
查看: 6307|回復(fù): 55
樓主
發(fā)表于 2025-3-21 16:36:33 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Offbeat Integral Geometry on Symmetric Spaces
編輯Valery V. Volchkov,Vitaly V. Volchkov
視頻videohttp://file.papertrans.cn/701/700651/700651.mp4
概述Covers over twenty years of extensive research on local aspects of integral geometry on symmetric spaces and the Heisenberg group in one condensed text.Highlights significant and previously unpublishe
圖書封面Titlebook: Offbeat Integral Geometry on Symmetric Spaces;  Valery V. Volchkov,Vitaly V. Volchkov Book 2013 Springer Basel 2013 Pompeiu property.harmon
描述The book demonstrates the development of integral geometry on domains of homogeneous spaces since 1990. It covers a wide range of topics, including analysis on multidimensional Euclidean domains and Riemannian symmetric spaces of arbitrary ranks as well as recent work on phase space and the Heisenberg group. The book includes many significant recent results, some of them hitherto unpublished, among which can be pointed out uniqueness theorems for various classes of functions, far-reaching generalizations of the two-radii problem, the modern versions of the Pompeiu problem, and explicit reconstruction formulae in problems of integral geometry. These results are intriguing and useful in various fields of contemporary mathematics. The proofs given are “minimal” in the sense that they involve only those concepts and facts which are indispensable for the essence of the subject. Each chapter provides a historical perspective on the results presented and includes many interesting open problems. Readers will find this book relevant to harmonic analysis on homogeneous spaces, invariant spaces theory, integral transforms on symmetric spaces and the Heisenberg group, integral equations, speci
出版日期Book 2013
關(guān)鍵詞Pompeiu property; harmonic analysis on homogeneous spaces; integral geometry; mean periodicity; symmetri
版次1
doihttps://doi.org/10.1007/978-3-0348-0572-8
isbn_softcover978-3-0348-0800-2
isbn_ebook978-3-0348-0572-8
copyrightSpringer Basel 2013
The information of publication is updating

書目名稱Offbeat Integral Geometry on Symmetric Spaces影響因子(影響力)




書目名稱Offbeat Integral Geometry on Symmetric Spaces影響因子(影響力)學(xué)科排名




書目名稱Offbeat Integral Geometry on Symmetric Spaces網(wǎng)絡(luò)公開度




書目名稱Offbeat Integral Geometry on Symmetric Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Offbeat Integral Geometry on Symmetric Spaces被引頻次




書目名稱Offbeat Integral Geometry on Symmetric Spaces被引頻次學(xué)科排名




書目名稱Offbeat Integral Geometry on Symmetric Spaces年度引用




書目名稱Offbeat Integral Geometry on Symmetric Spaces年度引用學(xué)科排名




書目名稱Offbeat Integral Geometry on Symmetric Spaces讀者反饋




書目名稱Offbeat Integral Geometry on Symmetric Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:50:46 | 只看該作者
Valery V. Volchkov,Vitaly V. Volchkovd kombiniert sowie Laborstudien und Feldversuche beschrieben...In ca. 25 Beitr?gen wird eine Lücke in der verfügbaren Literatur geschlossen, die der Vielzahl von Entwicklern und Anwendern einen Einblick in die aktuelle Lage und die zukünftigen Gestaltungsm?glichkeiten bietet..
板凳
發(fā)表于 2025-3-22 04:09:41 | 只看該作者
地板
發(fā)表于 2025-3-22 08:03:02 | 只看該作者
Valery V. Volchkov,Vitaly V. Volchkovd kombiniert sowie Laborstudien und Feldversuche beschrieben...In ca. 25 Beitr?gen wird eine Lücke in der verfügbaren Literatur geschlossen, die der Vielzahl von Entwicklern und Anwendern einen Einblick in die aktuelle Lage und die zukünftigen Gestaltungsm?glichkeiten bietet..
5#
發(fā)表于 2025-3-22 11:02:06 | 只看該作者
6#
發(fā)表于 2025-3-22 14:54:46 | 只看該作者
7#
發(fā)表于 2025-3-22 20:35:33 | 只看該作者
8#
發(fā)表于 2025-3-22 23:04:48 | 只看該作者
9#
發(fā)表于 2025-3-23 05:01:37 | 只看該作者
10#
發(fā)表于 2025-3-23 08:54:50 | 只看該作者
Valery V. Volchkov,Vitaly V. Volchkovgence and Viewpoint Complexity may help to automatically resolve a big number of computer graphics problems. However, there are special situations where is required to find a particular solution for each situation. In such a case, human intelligence has to replace, or to be combined with, artificial
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广德县| 满洲里市| 曲阜市| 甘德县| 万盛区| 运城市| 嘉兴市| 广南县| 招远市| 竹北市| 平邑县| 伊宁县| 景洪市| 香河县| 东源县| 金秀| 沅江市| 保定市| 凯里市| 中阳县| 毕节市| 获嘉县| 玛曲县| 凉城县| 芜湖县| 南澳县| 广河县| 历史| 长宁区| 阿坝县| 罗城| 申扎县| 昌吉市| 邢台县| 敦化市| 衢州市| 杂多县| 陕西省| 通城县| 安图县| 讷河市|