找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Off-Diagonal Bethe Ansatz for Exactly Solvable Models; Yupeng Wang,Wen-Li Yang,Kangjie Shi Book 2015 Springer-Verlag Berlin Heidelberg 201

[復(fù)制鏈接]
樓主: Orthosis
11#
發(fā)表于 2025-3-23 13:10:42 | 只看該作者
12#
發(fā)表于 2025-3-23 16:11:08 | 只看該作者
The Algebraic Bethe Ansatz,The algebraic Bethe Ansatz method for quantum integrable models was proposed by the Leningrad Group [.–.] in the late 1970s, based on YBE. This method was then generalized to open boundary integrable systems by Sklyanin [.] in 1988, through developing an equation accounting for the integrable boundaries.
13#
發(fā)表于 2025-3-23 21:38:02 | 只看該作者
The Periodic Anisotropic Spin-, Chains,Based on the pioneering work of Bethe [.] in which the coordinate Bethe Ansatz method was invented and the exact solution of the spin-. Heisenberg chain model was obtained [.], several authors continued the study of the physical properties of this model.
14#
發(fā)表于 2025-3-24 00:52:12 | 只看該作者
The Spin-, Torus,The spin-. torus model describes the anisotropic spin chain with antiperiodic boundary conditions or a M?bius-like topological boundary condition [.–.].
15#
發(fā)表于 2025-3-24 05:06:33 | 只看該作者
16#
發(fā)表于 2025-3-24 06:56:18 | 只看該作者
17#
發(fā)表于 2025-3-24 14:39:04 | 只看該作者
The Nested Off-Diagonal Bethe Ansatz,In Chap.?., we introduced how the nested algebraic Bethe Ansatz method was used in the exact solution of the periodic .-invariant spin chain. This method can also solve the open chain with diagonal boundaries [.–.].
18#
發(fā)表于 2025-3-24 15:26:01 | 只看該作者
19#
發(fā)表于 2025-3-24 21:03:48 | 只看該作者
The Izergin-Korepin Model,The integrable models can be classified into several series such as .-, .-, .- and .-types [.–.], associated with different Lie algebras [.].
20#
發(fā)表于 2025-3-25 03:02:33 | 只看該作者
Yupeng Wang,Wen-Li Yang,Kangjie ShiIntroduces basic concepts and newly developed mathematical methods of quantum integrable models.Presents solutions of some famous long-standing problems.Serves as both a reference work for researchers
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双峰县| 弥渡县| 巴里| 喜德县| 阜宁县| 海南省| 平阳县| 保德县| 正镶白旗| 孝义市| 长海县| 邢台县| 莲花县| 衡水市| 西盟| 乐山市| 隆昌县| 铁岭市| 赫章县| 莱阳市| 闵行区| 娄烦县| 佛冈县| 曲沃县| 双流县| 田林县| 宁明县| 兴隆县| 临清市| 红河县| 乌兰县| 瓮安县| 徐水县| 济阳县| 宜良县| 长泰县| 延安市| 云和县| 岳池县| 晋宁县| 阜康市|