找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Octonions, Jordan Algebras and Exceptional Groups; Tonny A. Springer,Ferdinand D. Veldkamp Book 2000 Springer-Verlag Berlin Heidelberg 200

[復制鏈接]
樓主: DEBUT
11#
發(fā)表于 2025-3-23 10:17:54 | 只看該作者
Triality,nd with the related triality in the Lie algebras of these groups, usually called local triality. Geometric triality on the quadric .(.) = 0 in case . is isotropic will be left aside; the reader interested in the subject may consult [B1Sp 60] and [Che 54, Ch. IV].
12#
發(fā)表于 2025-3-23 17:48:05 | 只看該作者
13#
發(fā)表于 2025-3-23 20:45:09 | 只看該作者
J-algebras and Albert Algebras, algebras. Our interest in Albert algebras is motivated by their connections with exceptional simple algebraic groups of type E. and F., a topic we will deal with in Ch. 7. They also play a role in a description of algebraic groups of type E. and E., but we leave that aspect aside. We will not enter
14#
發(fā)表于 2025-3-24 00:22:40 | 只看該作者
Proper J-algebras and Twisted Composition Algebras,tion of J-algebras which includes all nonreduced ones. For this purpose we make a link between J-algebras and twisted composition algebras. We will see that a J-algebra is reduced if and only if certain twisted composition algebras are reduced. This will lead to the result, already announced at the
15#
發(fā)表于 2025-3-24 05:15:35 | 只看該作者
16#
發(fā)表于 2025-3-24 08:16:48 | 只看該作者
17#
發(fā)表于 2025-3-24 11:02:14 | 只看該作者
https://doi.org/10.1007/978-3-662-12622-6Albert Algebras; Algebraic structure; Exceptional Groups; Octonions; algebra
18#
發(fā)表于 2025-3-24 16:20:04 | 只看該作者
The Automorphism Group of an Octonion Algebra,In this chapter we study the group . = Aut(.) of automorphisms of an octonion algebra . over a field .. By “automorphism” we will in this chapter always understand a .. Since automorphisms leave the norm invariant, Aut(.) is a subgroup of the orthogonal group O(.) of the norm of ..
19#
發(fā)表于 2025-3-24 21:08:53 | 只看該作者
20#
發(fā)表于 2025-3-25 00:51:17 | 只看該作者
Tonny A. Springer,Ferdinand D. VeldkampIncludes supplementary material:
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
如东县| 高要市| 西乡县| 德惠市| 南澳县| 桐柏县| 青阳县| 塔河县| 河北区| 策勒县| 普格县| 蓬莱市| 五原县| 合水县| 乐山市| 仙桃市| 佳木斯市| 新竹县| 开阳县| 安徽省| 隆德县| 肥城市| 元江| 柘荣县| 南皮县| 南雄市| 裕民县| 临湘市| 天柱县| 瓦房店市| 田林县| 镇宁| 合肥市| 会东县| 沙雅县| 东城区| 含山县| 老河口市| 盐山县| 榆社县| 虞城县|