找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Observer Design for Nonlinear Dynamical Systems; Differential Geometr Driss Boutat,Gang Zheng Book 2021 The Editor(s) (if applicable) and T

[復(fù)制鏈接]
查看: 26909|回復(fù): 43
樓主
發(fā)表于 2025-3-21 16:31:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Observer Design for Nonlinear Dynamical Systems
副標(biāo)題Differential Geometr
編輯Driss Boutat,Gang Zheng
視頻videohttp://file.papertrans.cn/701/700380/700380.mp4
概述Explains observability and observer notions from linear to nonlinear system.Presents a differential geometric method to treat various observer design problems.Showcases how the methodology can be appl
叢書名稱Lecture Notes in Control and Information Sciences
圖書封面Titlebook: Observer Design for Nonlinear Dynamical Systems; Differential Geometr Driss Boutat,Gang Zheng Book 2021 The Editor(s) (if applicable) and T
描述.This book presents a differential geometric method for designing nonlinear observers for multiple types of nonlinear systems, including single and multiple outputs, fully and partially observable systems, and regular and singular dynamical systems. It is an exposition of achievements in nonlinear observer normal forms...?..The book begins by discussing linear systems, introducing the concept of observability and observer design, and then explains the difficulty of those problems for nonlinear systems. After providing foundational information on the differential geometric method, the text shows how to use the method to address observer design problems. It presents methods for a variety of systems. The authors employ worked examples to illustrate the ideas presented...?..Observer Design for Nonlinear Dynamical Systems. will be of interest to researchers, graduate students, and industrial professionals working with control of mechanical and dynamical systems...?.
出版日期Book 2021
關(guān)鍵詞Observer Design; Nonlinear Dynamical Systems; Normal Form; Differential Geometry; Dynamic Extension; Nonl
版次1
doihttps://doi.org/10.1007/978-3-030-73742-9
isbn_softcover978-3-030-73744-3
isbn_ebook978-3-030-73742-9Series ISSN 0170-8643 Series E-ISSN 1610-7411
issn_series 0170-8643
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Observer Design for Nonlinear Dynamical Systems影響因子(影響力)




書目名稱Observer Design for Nonlinear Dynamical Systems影響因子(影響力)學(xué)科排名




書目名稱Observer Design for Nonlinear Dynamical Systems網(wǎng)絡(luò)公開度




書目名稱Observer Design for Nonlinear Dynamical Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Observer Design for Nonlinear Dynamical Systems被引頻次




書目名稱Observer Design for Nonlinear Dynamical Systems被引頻次學(xué)科排名




書目名稱Observer Design for Nonlinear Dynamical Systems年度引用




書目名稱Observer Design for Nonlinear Dynamical Systems年度引用學(xué)科排名




書目名稱Observer Design for Nonlinear Dynamical Systems讀者反饋




書目名稱Observer Design for Nonlinear Dynamical Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:31:37 | 只看該作者
0170-8643 er design problems.Showcases how the methodology can be appl.This book presents a differential geometric method for designing nonlinear observers for multiple types of nonlinear systems, including single and multiple outputs, fully and partially observable systems, and regular and singular dynamical
板凳
發(fā)表于 2025-3-22 01:14:45 | 只看該作者
Observability and Observer for Dynamical Systems, the observability of linear dynamical systems. Some well-known observers are then summarized, including Luenberger observer, Kalman observer and so on. Finally, we present how to analyze observability for nonlinear dynamical systems, and discuss several famous nonlinear observer design?techniques.
地板
發(fā)表于 2025-3-22 05:57:27 | 只看該作者
5#
發(fā)表于 2025-3-22 09:32:26 | 只看該作者
6#
發(fā)表于 2025-3-22 14:02:36 | 只看該作者
7#
發(fā)表于 2025-3-22 20:18:58 | 只看該作者
Book 2021ltiple outputs, fully and partially observable systems, and regular and singular dynamical systems. It is an exposition of achievements in nonlinear observer normal forms...?..The book begins by discussing linear systems, introducing the concept of observability and observer design, and then explain
8#
發(fā)表于 2025-3-22 23:15:02 | 只看該作者
9#
發(fā)表于 2025-3-23 04:03:33 | 只看該作者
Background on Differential Geometry, system can be governed by the associated vector field. In this sense, the dynamical behavior of such a system can be presented by smooth trajectories tangent to this vector field. Then, for a given dynamical system endowed with measurements, we can use the differential forms?to analyze its property
10#
發(fā)表于 2025-3-23 06:23:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
色达县| 托里县| 海口市| 昌乐县| 樟树市| 邵东县| 科技| 丹凤县| 湛江市| 百色市| 隆安县| 葫芦岛市| 拜泉县| 开远市| 汉沽区| 安阳市| 巧家县| 永年县| 临湘市| 盐池县| 巴中市| 盖州市| 池州市| 洪江市| 渝北区| 开阳县| 绿春县| 贵州省| 焦作市| 香格里拉县| 涞源县| 藁城市| 开封市| 易门县| 济宁市| 司法| 龙门县| 乌审旗| 铜梁县| 青海省| 大竹县|