找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Object Tracking Technology; Trends, Challenges a Ashish Kumar,Rachna Jain,Anand Nayyar Book 2023 The Editor(s) (if applicable) and The Auth

[復制鏈接]
樓主: deflate
11#
發(fā)表于 2025-3-23 10:20:31 | 只看該作者
12#
發(fā)表于 2025-3-23 15:34:48 | 只看該作者
13#
發(fā)表于 2025-3-23 19:12:56 | 只看該作者
14#
發(fā)表于 2025-3-23 23:05:05 | 只看該作者
15#
發(fā)表于 2025-3-24 04:20:55 | 只看該作者
Applications of Deep Learning-Based Methods on Surveillance Video Stream by Tracking Various Suspichways, universities, city administration offices, and smart cities. Using security software, an anomaly in the video can be detected swiftly and accurately. Video of riots, traffic violations, stampedes, and items like weapons left at sensitive locations, as well as abandoned luggage, illustrates an
16#
發(fā)表于 2025-3-24 08:19:56 | 只看該作者
Hardware Design Aspects of Visual Tracking System,e and machine learning, object detection and visual tracking are becoming crucial as well. These techniques are very complex and frequently require more parallelized approach to the algorithm. General-purpose CPU core thus is not suitable for these applications. GPU and ASICs designed for such paral
17#
發(fā)表于 2025-3-24 13:34:59 | 只看該作者
Automatic Helmet (Object) Detection and Tracking the Riders Using Kalman Filter Technique,os, the creation of autonomous video surveillance systems, etc. A typical use for such software is the analysis of object recognition and tracking in videos. Researchers have suggested a few clever ways in this context, including background detection, frame difference, and optical flow-based methods
18#
發(fā)表于 2025-3-24 16:49:23 | 只看該作者
19#
發(fā)表于 2025-3-24 21:06:25 | 只看該作者
Multiple Object Tracking of Autonomous Vehicles for Sustainable and Smart Cities,nd environmental effects during a time of fast urban development. In this work, autonomous vehicles (AVs) are examined as a potential mode of transportation for sustainable and intelligent development. First, we examine the conventional approaches for object tracking and then the deep learning-based
20#
發(fā)表于 2025-3-25 01:40:06 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
本溪| 阿拉尔市| 聊城市| 根河市| 黔江区| 刚察县| 綦江县| 五台县| 孝昌县| 岚皋县| 江川县| 内黄县| 兴安县| 周口市| 岳阳市| 喀喇沁旗| 山丹县| 六枝特区| 元阳县| 米易县| 三明市| 保靖县| 霍林郭勒市| 青岛市| 黎城县| 雅江县| 嘉善县| 新竹县| 涡阳县| 福泉市| 句容市| 颍上县| 德昌县| 紫阳县| 绥滨县| 临高县| 石嘴山市| 彭泽县| 冕宁县| 聂拉木县| 若尔盖县|