找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Object Representation in Computer Vision II; ECCV ‘96 Internation Jean Ponce,Andrew Zisserman,Martial Hebert Conference proceedings 1996 Sp

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:46:07 | 只看該作者
12#
發(fā)表于 2025-3-23 13:58:16 | 只看該作者
0302-9743 nd Ram Nevatia as well as a workshop report by the volume editors summarizing several panel discussions and the general state of the art in the area.978-3-540-61750-1978-3-540-70673-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
13#
發(fā)表于 2025-3-23 19:01:13 | 只看該作者
14#
發(fā)表于 2025-3-23 23:12:09 | 只看該作者
15#
發(fā)表于 2025-3-24 05:00:49 | 只看該作者
16#
發(fā)表于 2025-3-24 09:42:15 | 只看該作者
17#
發(fā)表于 2025-3-24 14:07:34 | 只看該作者
Combinatorial geometry for shape representation and indexing, interesting for general recognition problems..We present an algorithm for 3-D object hypothesis generation from single images. The combinatorial properties of triplets of line segments are used to define an index to a model library. This library consists of line segment triplets for object model vi
18#
發(fā)表于 2025-3-24 15:51:52 | 只看該作者
Shape constancy in pictorial relief, adds only small local details, but different illuminations produce significant alterations of relief. We conclude that . under changes in illumination rules throughout, but that the (small) deviations from true constancy reveal the effect of cues such as shading in a natural setting. Such a “pertur
19#
發(fā)表于 2025-3-24 19:23:18 | 只看該作者
Dimensionality of illumination manifolds in appearance matching,e light sources and for concave surfaces that exhibit interreflections. Finally, a simple but efficient algorithm is presented that uses just three manifold points for recognizing images taken under novel illuminations.
20#
發(fā)表于 2025-3-25 00:59:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辉县市| 司法| 昌宁县| 南雄市| 张家口市| 叙永县| 尤溪县| 砚山县| 当雄县| 正阳县| 民乐县| 田林县| 天峻县| 资讯 | 诸暨市| 习水县| 岢岚县| 镶黄旗| 奉新县| 缙云县| 清丰县| 庆元县| 乌兰浩特市| 邵阳市| 施甸县| 桃源县| 黑山县| 三河市| 鄯善县| 六安市| 上栗县| 新巴尔虎右旗| 岳普湖县| 乐业县| 额尔古纳市| 克东县| 习水县| 曲沃县| 咸丰县| 宜兰市| 安国市|