找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Object Representation in Computer Vision; International NSF-AR Martial Hebert,Jean Ponce,Ari Gross Conference proceedings 1995 Springer-Ver

[復(fù)制鏈接]
樓主: MEDAL
31#
發(fā)表于 2025-3-26 23:16:30 | 只看該作者
Appearance-based 3D object recognition,-line-segment features for recognition. We believe that general object recognition can only be accomplished by utilizing the appropriate sensors for each object class and the appropriate features that can be reliably extracted using those sensors. We also believe that the analysis of complex scenes
32#
發(fā)表于 2025-3-27 03:12:46 | 只看該作者
33#
發(fā)表于 2025-3-27 07:30:47 | 只看該作者
34#
發(fā)表于 2025-3-27 09:38:14 | 只看該作者
35#
發(fā)表于 2025-3-27 16:05:46 | 只看該作者
The epipolar parametrization,cal parametric representation which is a mesh. One of the advantages of this type of representation is that it is general and applies to any piecewise smooth surface, so it does not restrict the type of surface in any practical way. Local parametric representations can be combined into a global one
36#
發(fā)表于 2025-3-27 19:10:39 | 只看該作者
Using two-dimensional models to interact with the three-dimensional world,. The method is based on matching two-dimensional geometric structures between successive frames of an image sequence. A bitmap representing the object being tracked at one time frame is matched to features extracted from the image at the next time frame. The transformation mapping the object to the
37#
發(fā)表于 2025-3-27 22:18:14 | 只看該作者
38#
發(fā)表于 2025-3-28 04:29:22 | 只看該作者
Algebraic geometry and object representation in computer vision,faces having considerable advantages as objects of study in computer vision, the relevance of algebraic geometry when dealing with the representation of polynomial objects seems only natural. However, due to its high level of abstraction, this mathematical field has seen only few applications in com
39#
發(fā)表于 2025-3-28 08:09:39 | 只看該作者
40#
發(fā)表于 2025-3-28 13:07:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长岭县| 高密市| 深州市| 宁远县| 年辖:市辖区| 富顺县| 行唐县| 瑞安市| 六安市| 武夷山市| 吉安市| 鹤峰县| 临清市| 汉川市| 兴化市| 天祝| 佛冈县| 柳州市| 永和县| 琼中| 城固县| 泰州市| 永宁县| 菏泽市| 双柏县| 韩城市| 瑞昌市| 宜川县| 奈曼旗| 南川市| 临朐县| 金阳县| 宿迁市| 东台市| 枝江市| 北流市| 广安市| 榆社县| 阿鲁科尔沁旗| 繁昌县| 三明市|