找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Object Representation in Computer Vision; International NSF-AR Martial Hebert,Jean Ponce,Ari Gross Conference proceedings 1995 Springer-Ver

[復(fù)制鏈接]
樓主: MEDAL
31#
發(fā)表于 2025-3-26 23:16:30 | 只看該作者
Appearance-based 3D object recognition,-line-segment features for recognition. We believe that general object recognition can only be accomplished by utilizing the appropriate sensors for each object class and the appropriate features that can be reliably extracted using those sensors. We also believe that the analysis of complex scenes
32#
發(fā)表于 2025-3-27 03:12:46 | 只看該作者
33#
發(fā)表于 2025-3-27 07:30:47 | 只看該作者
34#
發(fā)表于 2025-3-27 09:38:14 | 只看該作者
35#
發(fā)表于 2025-3-27 16:05:46 | 只看該作者
The epipolar parametrization,cal parametric representation which is a mesh. One of the advantages of this type of representation is that it is general and applies to any piecewise smooth surface, so it does not restrict the type of surface in any practical way. Local parametric representations can be combined into a global one
36#
發(fā)表于 2025-3-27 19:10:39 | 只看該作者
Using two-dimensional models to interact with the three-dimensional world,. The method is based on matching two-dimensional geometric structures between successive frames of an image sequence. A bitmap representing the object being tracked at one time frame is matched to features extracted from the image at the next time frame. The transformation mapping the object to the
37#
發(fā)表于 2025-3-27 22:18:14 | 只看該作者
38#
發(fā)表于 2025-3-28 04:29:22 | 只看該作者
Algebraic geometry and object representation in computer vision,faces having considerable advantages as objects of study in computer vision, the relevance of algebraic geometry when dealing with the representation of polynomial objects seems only natural. However, due to its high level of abstraction, this mathematical field has seen only few applications in com
39#
發(fā)表于 2025-3-28 08:09:39 | 只看該作者
40#
發(fā)表于 2025-3-28 13:07:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 17:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
益阳市| 三河市| 抚松县| 彝良县| 岳西县| 峨眉山市| 永寿县| 扬中市| 龙口市| 潜江市| 沅陵县| 汝州市| 曲阜市| 白朗县| 米易县| 永靖县| 九江市| 如东县| 通州区| 碌曲县| 泰州市| 应城市| 泗阳县| 巴南区| 定远县| 彭阳县| 广州市| 江山市| 裕民县| 柳林县| 陆丰市| 金平| 哈尔滨市| 仪陇县| 紫阳县| 周至县| 金秀| 澜沧| 塔城市| 申扎县| 思茅市|