找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Obesity and Diabetes; Scientific Advances Joel Faintuch,Salom?o Faintuch Book 2020Latest edition Springer Nature Switzerland AG 2020 Insul

[復(fù)制鏈接]
樓主: ACID
31#
發(fā)表于 2025-3-26 22:53:31 | 只看該作者
Alexandre Assuane Duarte,Olga Golubnitschajansider both static and quasistatic antiplane problems in which the friction conditions are either the Tresca law or its regularization. For each model, we derive a variational formulation that is in the form of an elliptic or evolutionary variational inequality with a Volterra integral term for the
32#
發(fā)表于 2025-3-27 04:44:27 | 只看該作者
Fernanda Ornellas,Iara Karise,Marcia Barbosa Aguila,Carlos Alberto Mandarim-de-Lacerda we- posedness of the model, including existence and uniqueness of solutions; and (ii) qualitative properties of solutions. A positive answer to the ?rst question, - ing of prime interest on purely mathematical grounds, also provides an important test of the viability of the model as a description o
33#
發(fā)表于 2025-3-27 08:43:31 | 只看該作者
34#
發(fā)表于 2025-3-27 12:22:37 | 只看該作者
Theocharis Koufakis,Spyridon N. Karras,Kalliopi Kotsanifolds which was introduced in [177] (see also the monographs [61, 90, 273] and the references therein and also Section 7.6 in Chapter 7). These manifolds are finite-dimensional invariant surfaces that contain global attractors and attract trajectories exponentially fast. Moreover, there is a possi
35#
發(fā)表于 2025-3-27 16:13:35 | 只看該作者
exposition of methods pertaining to well-posedness, stabiliIn the study of mathematical models that arise in the context of concrete - plications, the following two questions are of fundamental importance: (i) we- posedness of the model, including existence and uniqueness of solutions; and (ii) qua
36#
發(fā)表于 2025-3-27 18:53:23 | 只看該作者
37#
發(fā)表于 2025-3-27 22:00:59 | 只看該作者
Christopher A. Simeone,Jose M. Lazaro-Guevara,Marcus G. Pezzolesication.The contributors in this volume are world-renowned exThis book contains extended and revised versions of the best papers that were presented during the fifteenth edition of the IFIP/IEEE WG10.5 International Conference on Very Large Scale Integration, a global System-on-a-Chip Design & CAD co
38#
發(fā)表于 2025-3-28 05:18:19 | 只看該作者
39#
發(fā)表于 2025-3-28 06:20:58 | 只看該作者
http://image.papertrans.cn/o/image/700118.jpg
40#
發(fā)表于 2025-3-28 11:16:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 22:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿克陶县| 龙江县| 沁水县| 衡阳县| 阿拉善盟| 彰武县| 明水县| 鄢陵县| 甘孜县| 法库县| 龙胜| 托克托县| 东阳市| 宝丰县| 新昌县| 友谊县| 荥经县| 平顶山市| 连南| 旬邑县| 南丹县| 芜湖市| 宜昌市| 九寨沟县| 东莞市| 株洲市| 灵丘县| 凤山市| 大邑县| 深泽县| 进贤县| 洱源县| 科技| 彩票| 宣化县| 文安县| 滕州市| 南乐县| 喀喇沁旗| 阜康市| 囊谦县|