找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging; Second International Luping Zhou,Duygu Sarikaya,Hong

[復制鏈接]
樓主: Cleveland
21#
發(fā)表于 2025-3-25 06:15:58 | 只看該作者
Feature Aggregation Decoder for Segmenting Laparoscopic Scenesion. Scene segmentation approaches often rely on encoder-decoder architectures that encode a representation of the input to be decoded to semantic pixel labels. In this paper, we propose to use the deep . model for the encoder and a simple yet effective decoder that relies on a feature aggregation m
22#
發(fā)表于 2025-3-25 08:17:37 | 只看該作者
Preoperative Planning for Guidewires Employing Shape-Regularized Segmentation and Optimized Trajectoally driven guidewires replace manual insertion and leave the surgeon the task of planning optimal trajectories based on segmentation of associated risk structures. However, such a pipeline brings new challenges. While Deep learning based segmentation such as U-Net can achieve outstanding Dice score
23#
發(fā)表于 2025-3-25 14:48:40 | 只看該作者
24#
發(fā)表于 2025-3-25 18:14:44 | 只看該作者
Unsupervised Temporal Video Segmentation as an Auxiliary Task for Predicting the Remaining Surgery Dnt success of deep learning-based methods in computer vision, several neural network approaches have been proposed for fully automatic RSD prediction based solely on visual data from the endoscopic camera. We investigate whether RSD prediction can be improved using unsupervised temporal video segmen
25#
發(fā)表于 2025-3-25 22:45:29 | 只看該作者
26#
發(fā)表于 2025-3-26 00:23:28 | 只看該作者
27#
發(fā)表于 2025-3-26 05:12:47 | 只看該作者
Deep Transfer Learning for Whole-Brain FMRI Analyses often hindered by the small sample size and high dimensionality of these datasets. Especially, in clinical settings, where patient data are scarce. In this work, we demonstrate that transfer learning represents a solution to this problem. Particularly, we show that a DL model, which has been previo
28#
發(fā)表于 2025-3-26 10:06:03 | 只看該作者
29#
發(fā)表于 2025-3-26 14:19:26 | 只看該作者
30#
發(fā)表于 2025-3-26 18:00:44 | 只看該作者
Data Pooling and Sampling of?Heterogeneous Image Data for White Matter Hyperintensity Segmentationen training Deep Neural Networks (DNN) to segment WMH, data pooling may be used to increase the training dataset size. However, it is not yet fully understood how pooling of heterogeneous data influences the segmentation performance. In this contribution, we investigate the impact of sampling ratios
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
凤城市| 信宜市| 伊春市| 手游| 克拉玛依市| 丰台区| 当涂县| 伊金霍洛旗| 泾阳县| 望江县| 师宗县| 巴彦淖尔市| 辽宁省| 临湘市| 哈巴河县| 太谷县| 江华| 邓州市| 蓝山县| 定陶县| 浦东新区| 若羌县| 洛浦县| 德保县| 怀化市| 安化县| 高邮市| 景泰县| 株洲县| 西宁市| 武陟县| 桦南县| 临洮县| 桐梓县| 凉城县| 龙州县| 蒙山县| 临夏县| 留坝县| 白河县| 九龙城区|