找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Dynamics for Time-varying Problems; Advances and Applica Long Jin,Lin Wei,Xin Lv Book 2025 The Editor(s) (if applicable) and The Aut

[復制鏈接]
樓主: digestive-tract
11#
發(fā)表于 2025-3-23 13:41:19 | 只看該作者
12#
發(fā)表于 2025-3-23 14:53:39 | 只看該作者
Neural Dynamics Based on Control Theoretical Techniques,ional models. From the control theoretical perspective, a computational method for solving an algebraic can be deemed as a controller, of which the error should converge to zero, and subsequently, the controller’s output is identical to the theoretical solution of the algebraic equation. This chapte
13#
發(fā)表于 2025-3-23 18:52:17 | 只看該作者
14#
發(fā)表于 2025-3-24 02:15:56 | 只看該作者
Noise-Tolerant Neural Dynamics,mputational models are presented for solving them under the hypothesis of short-time invariance. To eliminate the large lagging error in the solution of the inherently dynamic nonlinear optimization problem, the only way is to estimate the future unknown information by using the present and previous
15#
發(fā)表于 2025-3-24 03:16:19 | 只看該作者
16#
發(fā)表于 2025-3-24 09:55:41 | 只看該作者
17#
發(fā)表于 2025-3-24 13:38:52 | 只看該作者
High-Order Robust Discrete-Time Neural Dynamics,s-time one and depend on the Euler difference formula, which cannot apply to essentially discrete problems and have low solution accuracy. Moreover, these methods all focus on static problems, not consider time-varying ones, and thus may have unsatisfactory performance in applications with time-vary
18#
發(fā)表于 2025-3-24 16:51:43 | 只看該作者
19#
發(fā)表于 2025-3-24 19:35:31 | 只看該作者
Book 2025al analysis, simulative examples, and physical experiments. Based on these methods, their applications include motion planning of redundant manipulators, filter design, winner-take-all operation, multiple-input multiple-output system configuration, multi-linear tensor equation solving, and manipulab
20#
發(fā)表于 2025-3-24 23:18:41 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 17:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
松溪县| 芜湖县| 内江市| 中宁县| 揭西县| 安西县| 眉山市| 吉安县| 沈丘县| SHOW| 舟曲县| 宜章县| 手游| 四子王旗| 柘荣县| 凌海市| 南投县| 防城港市| 新郑市| 雷山县| 延寿县| 宣武区| 冷水江市| 台江县| 绥芬河市| 谢通门县| 碌曲县| 弥渡县| 太原市| 邓州市| 宝鸡市| 崇礼县| 云和县| 黄梅县| 兴安县| 石门县| 綦江县| 宜城市| 修文县| 澄江县| 永善县|