找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Dynamics for Time-varying Problems; Advances and Applica Long Jin,Lin Wei,Xin Lv Book 2025 The Editor(s) (if applicable) and The Aut

[復制鏈接]
樓主: digestive-tract
11#
發(fā)表于 2025-3-23 13:41:19 | 只看該作者
12#
發(fā)表于 2025-3-23 14:53:39 | 只看該作者
Neural Dynamics Based on Control Theoretical Techniques,ional models. From the control theoretical perspective, a computational method for solving an algebraic can be deemed as a controller, of which the error should converge to zero, and subsequently, the controller’s output is identical to the theoretical solution of the algebraic equation. This chapte
13#
發(fā)表于 2025-3-23 18:52:17 | 只看該作者
14#
發(fā)表于 2025-3-24 02:15:56 | 只看該作者
Noise-Tolerant Neural Dynamics,mputational models are presented for solving them under the hypothesis of short-time invariance. To eliminate the large lagging error in the solution of the inherently dynamic nonlinear optimization problem, the only way is to estimate the future unknown information by using the present and previous
15#
發(fā)表于 2025-3-24 03:16:19 | 只看該作者
16#
發(fā)表于 2025-3-24 09:55:41 | 只看該作者
17#
發(fā)表于 2025-3-24 13:38:52 | 只看該作者
High-Order Robust Discrete-Time Neural Dynamics,s-time one and depend on the Euler difference formula, which cannot apply to essentially discrete problems and have low solution accuracy. Moreover, these methods all focus on static problems, not consider time-varying ones, and thus may have unsatisfactory performance in applications with time-vary
18#
發(fā)表于 2025-3-24 16:51:43 | 只看該作者
19#
發(fā)表于 2025-3-24 19:35:31 | 只看該作者
Book 2025al analysis, simulative examples, and physical experiments. Based on these methods, their applications include motion planning of redundant manipulators, filter design, winner-take-all operation, multiple-input multiple-output system configuration, multi-linear tensor equation solving, and manipulab
20#
發(fā)表于 2025-3-24 23:18:41 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 17:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
长沙县| 汉源县| 永嘉县| 和林格尔县| 自贡市| 浦北县| 武山县| 淳安县| 翁源县| 汉沽区| 阿巴嘎旗| 莫力| 丹凤县| 加查县| 琼结县| 桂东县| 忻州市| 南宫市| 平凉市| 滨州市| 通城县| 巴林左旗| 元江| 汉中市| 平顶山市| 灵丘县| 开封市| 克山县| 千阳县| 胶州市| 金堂县| 米泉市| 台山市| 比如县| 巨鹿县| 荃湾区| 奈曼旗| 丽水市| 凤山市| 晋城| 西乡县|