找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 13th National CCF Co Derek F. Wong,Zhongyu Wei,Muyun Yang Conference proceedings 2025 Th

[復(fù)制鏈接]
樓主: 粘上
31#
發(fā)表于 2025-3-26 22:37:44 | 只看該作者
32#
發(fā)表于 2025-3-27 03:00:45 | 只看該作者
33#
發(fā)表于 2025-3-27 07:33:22 | 只看該作者
34#
發(fā)表于 2025-3-27 10:36:11 | 只看該作者
Enhancing Word-Level Completion for?Masked Language Model with?Multi-Model Fusionrocess of human translation and ensure the translation quality. Although significant progress has been made in the field, there may be multiple candidate words when models predict words. Multiple words make up a list of candidate words. We improve the existing model by determining the most credible
35#
發(fā)表于 2025-3-27 15:06:38 | 只看該作者
JumpLiteGCN: A Lightweight Approach to?Hierarchical Text Classificationsification methods often face dual constraints of efficiency and performance. To overcome these challenges, this study proposes a lightweight graph convolutional network model enhanced with jump connections (JumpLiteGCN). This significantly reduces the model’s complexity and computational costs by s
36#
發(fā)表于 2025-3-27 21:22:41 | 只看該作者
Enhancing Complex Causality Extraction via?Improved Subtask Interaction and?Knowledge Fusionthe best approach for the ECE task. However, existing fine-tuning based ECE methods cannot address all three key challenges in ECE simultaneously: 1)?., where multiple causal-effect pairs occur within a single sentence; 2)?., which involves modeling the mutual dependence between the two subtasks of
37#
發(fā)表于 2025-3-28 01:30:39 | 只看該作者
Mathematical Reasoning via?Multi-step Self Questioning and?Answering for?Small Language Modelsting works have tried to leverage the rationales of LLMs to train small language models (SLMs) for enhanced reasoning abilities, referred to as distillation. However, most existing distillation methods have not considered guiding the small models to solve problems progressively from simple to comple
38#
發(fā)表于 2025-3-28 02:07:12 | 只看該作者
39#
發(fā)表于 2025-3-28 09:52:58 | 只看該作者
Modeling Comparative Logical Relation with?Contrastive Learning for?Text Generation a table. Existing D2T works mainly focus on describing the superficial . among entities, while ignoring the deep ., such as A is better than B in a certain aspect with a corresponding opinion, which is quite common in our daily life. In this paper, we introduce a new D2T task named comparative logi
40#
發(fā)表于 2025-3-28 13:21:42 | 只看該作者
MANet: A Multiview Attention Network for?Automatic ICD Codingrbose nature of medical records. Currently, most methods employ deep neural networks to learn the representation of clinical notes from a single perspective. These single-view-based methods overlook the exploitation and fusion of multiview features to enhance the precision of ICD coding. In this pap
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
景泰县| 台前县| 沂源县| 江门市| 道孚县| 尉氏县| 邵东县| 崇州市| 哈密市| 莱芜市| 垦利县| 景谷| 林西县| 长顺县| 沾化县| 长治县| 东丽区| 桃园市| 绵阳市| 永新县| 唐山市| 台江县| 股票| 永仁县| 青州市| 昆明市| 阳高县| 泗水县| 三江| 霍林郭勒市| 忻州市| 达州市| 枣强县| 肇东市| 县级市| 宁河县| 柯坪县| 深圳市| 夏邑县| 乌兰县| 闵行区|