找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 13th National CCF Co Derek F. Wong,Zhongyu Wei,Muyun Yang Conference proceedings 2025 Th

[復(fù)制鏈接]
樓主: radionuclides
21#
發(fā)表于 2025-3-25 05:27:38 | 只看該作者
22#
發(fā)表于 2025-3-25 11:03:23 | 只看該作者
Enhanced Nominal Compound Chain Extraction with?Boundary and?Chain Informationnsatisfying performance of nominal compound chain extraction due to the incorrect identification of nominal compound boundary and the clustering errors. In this paper, we propose a joint model for the NCCE task. For document representation, a multi-head attention approach is adopted to learn the con
23#
發(fā)表于 2025-3-25 13:08:33 | 只看該作者
24#
發(fā)表于 2025-3-25 16:57:17 | 只看該作者
Overview of?the?NLPCC 2024 Shared Task on?Chinese Metaphor Generationd Chinese Computing (NLPCC 2024). The goal of this shared task is to generate Chinese metaphors using machine learning techniques and effectively identifying basic components of metaphorical sentences. It is divided into two subtasks: 1) Metaphor Generation, which involves creating a metaphor from a
25#
發(fā)表于 2025-3-25 20:01:17 | 只看該作者
ACTOR: Advancing Argument Components Identification Through In-Context Learning and?Proximity Informntative expression. The task of identifying argument components aids students in understanding the structure of argumentative essays and assists teachers in evaluating students’ proficiency in scientific argument mining. However, existing research lacks a detailed classification of argument types. T
26#
發(fā)表于 2025-3-26 02:15:28 | 只看該作者
Improving Inference via?Rich Path Information for?Dialogue Relation Extractiondirect associations between inter-sentence entity pairs and the lack of path information makes identifying inter-sentence entity pair relations challenging. To address this issue, we proposes an effective inference model that constructs an entity co-occurrence graph of dialogue documents to model in
27#
發(fā)表于 2025-3-26 08:19:10 | 只看該作者
28#
發(fā)表于 2025-3-26 10:41:03 | 只看該作者
A Cross-Modal Correlation Fusion Network for?Emotion Recognition in?Conversationsearning Network (MCRLN) mitigates the difficulty in categorizing tail emotions by combining supervised contrastive learning and multimodal data augmentation. Experimental results on the IEMOCAP and MELD datasets demonstrate the effectiveness and superiority of our proposed CMCFN model.
29#
發(fā)表于 2025-3-26 15:36:43 | 只看該作者
30#
發(fā)表于 2025-3-26 17:39:20 | 只看該作者
ACTOR: Advancing Argument Components Identification Through In-Context Learning and?Proximity Informf.amework .. We employ a proximity information awareness (PIA) strategy to provide the model with more relevant information and use the in-context learning (ICL) method to offer pertinent reference examples. Experimental results indicate that our method is competitive in the argument component identification task.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
琼结县| 永城市| 云和县| 长治市| 彩票| 亚东县| 太湖县| 沙河市| 张家界市| 怀柔区| 湘潭县| 贺兰县| 娄底市| 吕梁市| 萨嘎县| 榆林市| 古交市| 维西| 德阳市| 沂南县| 佳木斯市| 莱西市| 嘉义市| 东方市| 扬州市| 图片| 商南县| 阳信县| 永宁县| 五峰| 绥化市| 盐亭县| 读书| 东乌珠穆沁旗| 阜南县| 博湖县| 神池县| 开封县| 南靖县| 云南省| 邻水|