找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 13th National CCF Co Derek F. Wong,Zhongyu Wei,Muyun Yang Conference proceedings 2025 Th

[復(fù)制鏈接]
樓主: 紀(jì)念性
11#
發(fā)表于 2025-3-23 10:41:09 | 只看該作者
Chinese Personalized Commonsense Understanding and?Reasoning Based on?Curriculum-Learning BERT, GPT2, and BART with different structures. The experimental results show that the models trained using the curriculum-learning training framework are able to generate more diversified and personality-trait-compliant commonsense reasoning results.
12#
發(fā)表于 2025-3-23 16:54:13 | 只看該作者
13#
發(fā)表于 2025-3-23 20:30:40 | 只看該作者
14#
發(fā)表于 2025-3-24 00:36:11 | 只看該作者
ConFit: Contrastive Fine-Tuning of?Text-to-Text Transformer for?Relation Classificationd on their context. The latest trend for dealing with the task resorts to pre-trained language models (PLMs). It transforms the discriminative RC into a linguistics problem and fully induces the language knowledge PLMs derived from pre-training. Despite the visible progress, existing approaches hand
15#
發(fā)表于 2025-3-24 04:55:33 | 只看該作者
16#
發(fā)表于 2025-3-24 08:03:59 | 只看該作者
17#
發(fā)表于 2025-3-24 11:10:25 | 只看該作者
18#
發(fā)表于 2025-3-24 18:01:51 | 只看該作者
An Iterative Framework for?Document-Level Event Argument Extraction Assisted by?Long Short-Term Memot structure is complex. Most of the current methods are entity-based classification or generative frameworks, facing significant challenges when dealing with argument types that are not entities and handling complex event types. In this paper, we propose an iterative extraction framework for DEAE, w
19#
發(fā)表于 2025-3-24 23:04:28 | 只看該作者
20#
發(fā)表于 2025-3-25 02:27:14 | 只看該作者
Prompt Debiasing via?Causal Intervention for?Event Argument Extractionnarios. By formatting a fine-tuning task into a pre-training objective, prompt-based methods resolve the data scarce problem effectively. However, previous researches seldom investigate the discrepancy among different strategies on prompt formulation. In this work, we compare two kinds of prompts, n
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 19:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
页游| 新昌县| 宣汉县| 微山县| 分宜县| 琼海市| 石家庄市| 嘉鱼县| 富宁县| 阿瓦提县| 青铜峡市| 乌海市| 栾城县| 肥乡县| 荣昌县| 舞钢市| 靖宇县| 马边| 上思县| 贵南县| 织金县| 德安县| 桐梓县| 安义县| 阆中市| 丹阳市| 扶风县| 金湖县| 罗定市| 墨玉县| 彰化市| 鄂托克旗| 栖霞市| 铜梁县| 三原县| 剑川县| 敦煌市| 阿拉善盟| 汾阳市| 台南县| 永昌县|