找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 13th National CCF Co Derek F. Wong,Zhongyu Wei,Muyun Yang Conference proceedings 2025 Th

[復(fù)制鏈接]
樓主: 紀(jì)念性
11#
發(fā)表于 2025-3-23 10:41:09 | 只看該作者
Chinese Personalized Commonsense Understanding and?Reasoning Based on?Curriculum-Learning BERT, GPT2, and BART with different structures. The experimental results show that the models trained using the curriculum-learning training framework are able to generate more diversified and personality-trait-compliant commonsense reasoning results.
12#
發(fā)表于 2025-3-23 16:54:13 | 只看該作者
13#
發(fā)表于 2025-3-23 20:30:40 | 只看該作者
14#
發(fā)表于 2025-3-24 00:36:11 | 只看該作者
ConFit: Contrastive Fine-Tuning of?Text-to-Text Transformer for?Relation Classificationd on their context. The latest trend for dealing with the task resorts to pre-trained language models (PLMs). It transforms the discriminative RC into a linguistics problem and fully induces the language knowledge PLMs derived from pre-training. Despite the visible progress, existing approaches hand
15#
發(fā)表于 2025-3-24 04:55:33 | 只看該作者
16#
發(fā)表于 2025-3-24 08:03:59 | 只看該作者
17#
發(fā)表于 2025-3-24 11:10:25 | 只看該作者
18#
發(fā)表于 2025-3-24 18:01:51 | 只看該作者
An Iterative Framework for?Document-Level Event Argument Extraction Assisted by?Long Short-Term Memot structure is complex. Most of the current methods are entity-based classification or generative frameworks, facing significant challenges when dealing with argument types that are not entities and handling complex event types. In this paper, we propose an iterative extraction framework for DEAE, w
19#
發(fā)表于 2025-3-24 23:04:28 | 只看該作者
20#
發(fā)表于 2025-3-25 02:27:14 | 只看該作者
Prompt Debiasing via?Causal Intervention for?Event Argument Extractionnarios. By formatting a fine-tuning task into a pre-training objective, prompt-based methods resolve the data scarce problem effectively. However, previous researches seldom investigate the discrepancy among different strategies on prompt formulation. In this work, we compare two kinds of prompts, n
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 19:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘孜| 策勒县| 邳州市| 锦州市| 依安县| 普定县| 正宁县| 大埔县| 济南市| 田阳县| 固阳县| 勃利县| 乐至县| 抚宁县| 紫云| 苏尼特右旗| 衢州市| 晋城| 石首市| 承德市| 榆林市| 亳州市| 改则县| 友谊县| 贵定县| 通化市| 垦利县| 阿图什市| 福泉市| 延长县| 鹿泉市| 肇东市| 延寿县| 呼玛县| 乌拉特后旗| 夏邑县| 自贡市| 贞丰县| 靖边县| 富顺县| 香格里拉县|