找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 13th National CCF Co Derek F. Wong,Zhongyu Wei,Muyun Yang Conference proceedings 2025 Th

[復制鏈接]
樓主: 紀念性
11#
發(fā)表于 2025-3-23 10:41:09 | 只看該作者
Chinese Personalized Commonsense Understanding and?Reasoning Based on?Curriculum-Learning BERT, GPT2, and BART with different structures. The experimental results show that the models trained using the curriculum-learning training framework are able to generate more diversified and personality-trait-compliant commonsense reasoning results.
12#
發(fā)表于 2025-3-23 16:54:13 | 只看該作者
13#
發(fā)表于 2025-3-23 20:30:40 | 只看該作者
14#
發(fā)表于 2025-3-24 00:36:11 | 只看該作者
ConFit: Contrastive Fine-Tuning of?Text-to-Text Transformer for?Relation Classificationd on their context. The latest trend for dealing with the task resorts to pre-trained language models (PLMs). It transforms the discriminative RC into a linguistics problem and fully induces the language knowledge PLMs derived from pre-training. Despite the visible progress, existing approaches hand
15#
發(fā)表于 2025-3-24 04:55:33 | 只看該作者
16#
發(fā)表于 2025-3-24 08:03:59 | 只看該作者
17#
發(fā)表于 2025-3-24 11:10:25 | 只看該作者
18#
發(fā)表于 2025-3-24 18:01:51 | 只看該作者
An Iterative Framework for?Document-Level Event Argument Extraction Assisted by?Long Short-Term Memot structure is complex. Most of the current methods are entity-based classification or generative frameworks, facing significant challenges when dealing with argument types that are not entities and handling complex event types. In this paper, we propose an iterative extraction framework for DEAE, w
19#
發(fā)表于 2025-3-24 23:04:28 | 只看該作者
20#
發(fā)表于 2025-3-25 02:27:14 | 只看該作者
Prompt Debiasing via?Causal Intervention for?Event Argument Extractionnarios. By formatting a fine-tuning task into a pre-training objective, prompt-based methods resolve the data scarce problem effectively. However, previous researches seldom investigate the discrepancy among different strategies on prompt formulation. In this work, we compare two kinds of prompts, n
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
渝中区| 扶余县| 山东| 遂宁市| 阿荣旗| 民权县| 响水县| 黎平县| 丰镇市| 周至县| 托克逊县| 松江区| 内黄县| 齐齐哈尔市| 平安县| 申扎县| 两当县| 南溪县| 上高县| 抚顺市| 基隆市| 偃师市| 高雄市| 鄢陵县| 东光县| 务川| 南阳市| 会东县| 鹤岗市| 绥宁县| 东光县| 莆田市| 大足县| 敖汉旗| 瑞金市| 修水县| 罗山县| 濉溪县| 苏州市| 临海市| 东明县|