找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerische Methoden der Approximationstheorie; Vortragsauszüge der L. Collatz,G. Meinardus,H. Werner Book 1978 Springer Basel AG 1978 Appr

[復(fù)制鏈接]
樓主: 管玄樂團
11#
發(fā)表于 2025-3-23 10:29:47 | 只看該作者
,Tschebyscheff — Approximation mit Exponentialsummen mit Polynomialen Exponenten,perties of the family E., where mainly the connection between certain linear differential equations and E. leads to the existence of a best approximation. As E. doesn’t fullfill the Haar-condition, the uniqueness could only be verified for sum of exponentials with nonnegative coefficients. Neverthel
12#
發(fā)表于 2025-3-23 16:07:48 | 只看該作者
Zur Anzahl der Interpolationspunkte polynomialer Tschebyscheff-Approximationen im Einheitskreis, the error function has at least n + 1 zeros on (a,b). In general no analogous result holds for the case of Tschebyscheff approximation to an analytic function on the disk S ? {z∣ ∣z∣ ≤ 1} in the complex plane. However Saff [4] exhibits a class of entire function with the property that for each n su
13#
發(fā)表于 2025-3-23 18:28:27 | 只看該作者
,über die Koeffizienten der Polynome Bester Approximation,. mit Unsicherheiten behaftet ist, weil diese Koeffizienten noch erheblich variieren k?nnen, wenn die Extrema von f — ba.[f] innerhalb der Rechengenauigkeit ausgeglichen sind. Es sollen daher hier einige Aussagen bewiesen werden, aus denen in einfachster Weise Schranken für die a. zu entnehmen sind.
14#
發(fā)表于 2025-3-23 23:52:50 | 只看該作者
15#
發(fā)表于 2025-3-24 03:56:21 | 只看該作者
16#
發(fā)表于 2025-3-24 10:22:26 | 只看該作者
17#
發(fā)表于 2025-3-24 14:25:22 | 只看該作者
Some approximations and algorithms for calculators and microcomputers,racy which is about as good — and sometimes even better — than the accuracy you get using a big computer, and at a speed which is an immense improvement on the slide rules and logarithm tables of just a few years ago. And equally important: at a price you can afford — at least after the next price r
18#
發(fā)表于 2025-3-24 16:33:26 | 只看該作者
,Die Numerische Berechnung von Startn?herungen bei der Exponentialapproximation,culation of the roots of an algebraic polynomial. A series of numerical examples illuminates the applicability and the limits of the method, at the same time exposing some numerical peculiarities of approximation by exponentials.
19#
發(fā)表于 2025-3-24 19:12:45 | 只看該作者
On Incomplete Polynomials,polynomials of the special form ., θ fixed with 0 < θ < 1, n arbitrary, n ≥ 0. Some convergence properties of sequences of such incomplete polynomials were studied by the authors [6], and by Kemperman and Lorentz [1]. In this present paper, we investigate the analog of the classical Chebyshev polyno
20#
發(fā)表于 2025-3-25 02:02:35 | 只看該作者
Approximation und Transformationsmethoden,theory. In particular, the trigonometric interpolation, the “algebraic” interpolation and the cardinal logarithmic splines are considered. The investigation of the last example is based on an appropriate Abel-Tauber theorem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海口市| 米林县| 马龙县| 栾川县| 会泽县| 社旗县| 东港市| 衢州市| 旌德县| 当雄县| 平和县| 湄潭县| 沧源| 新密市| 灵台县| 比如县| 盘锦市| 石柱| 洞头县| 保靖县| 陕西省| 油尖旺区| 资兴市| 城市| 安溪县| 惠安县| 武汉市| 新昌县| 驻马店市| 稻城县| 阿拉善盟| 桐乡市| 武安市| 怀柔区| 顺平县| 崇礼县| 宁陕县| 萨嘎县| 玛沁县| 崇仁县| 海宁市|