找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerische Methoden bei Optimierungsaufgaben; Band 2: Vortragsausz L. Collatz,W. Wetterling Book 1974 Springer Basel AG 1974 Funktion.Funkt

[復(fù)制鏈接]
樓主: Consonant
21#
發(fā)表于 2025-3-25 03:52:16 | 只看該作者
22#
發(fā)表于 2025-3-25 08:05:25 | 只看該作者
23#
發(fā)表于 2025-3-25 13:23:33 | 只看該作者
Ein Optimierungsproblem aus der Kristallographie,t of estimations of the solution can be obtained by a simple algorithm dividing the problem into a nonlinear optimization problem with integer variables and a convex problem with 6 real variables. The performance of this algorithm is studied and two examples are given.
24#
發(fā)表于 2025-3-25 16:59:45 | 只看該作者
,über Eine Nomographische Methode für Optimierungsaufgaben, to the constraints.where n, the number of the variable, is not predetermined. The nomograph for the procedure is constructed of contour lines of the function g(.,.) as well as two other auxiliary curves.
25#
發(fā)表于 2025-3-25 20:14:37 | 只看該作者
978-3-0348-5322-4Springer Basel AG 1974
26#
發(fā)表于 2025-3-26 04:01:34 | 只看該作者
27#
發(fā)表于 2025-3-26 06:38:04 | 只看該作者
Minimalisierung Durch Anlegung Eines Gravitationsfeldes,Sei z = f(.) zu minimalisieren, . = (x., x.,...x.), f ∈ C.. Sei F(., z) = f(.) ? z, dann ist F = 0 eine Oberfl?che in R. von der wir den ?niedrigsten“ Punkt suchen. Es gebe in R. eine Gravitation . = (0, 0,...0, ?g).
28#
發(fā)表于 2025-3-26 10:39:01 | 只看該作者
Eine Kombination des Branch-and-Bound-Prinzips und der Dynamischen Optimierung an einem Beispiel auFür das allgemeine mehrstufige Entscheidungsproblem . mit endlichen Mengen Y. und f. : Y. × ... × Y. → R (k=1, .., n) wird das Branch-and-Bound-Prinzip definiert, das in der Enumeration eines Baum-Graphen (Suchbaum) besteht. Die Knoten des Suchbaums stellen Teil-Entscheidungsfolgen (Teilpl?ne) dar.
29#
發(fā)表于 2025-3-26 13:35:03 | 只看該作者
30#
發(fā)表于 2025-3-26 17:32:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 14:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
时尚| 鹤庆县| 沅江市| 江安县| 富裕县| 龙海市| 昌都县| 沾益县| 栾城县| 教育| 岳普湖县| 新郑市| 平泉县| 华阴市| 荣昌县| 德清县| 乌兰浩特市| 富蕴县| 濮阳市| 陈巴尔虎旗| 保山市| 涿鹿县| 勃利县| 宜君县| 固镇县| 安顺市| 黑山县| 梁河县| 商都县| 恩施市| 渭南市| 观塘区| 康平县| 额济纳旗| 卢氏县| 浏阳市| 诏安县| 焉耆| 宁乡县| 祁门县| 新绛县|