找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerische Mathematik für Ingenieure und Physiker; Band 2: Eigenwertpro Willi T?rnig Textbook 19791st edition Springer-Verlag Berlin Heidel

[復制鏈接]
樓主: MAXIM
11#
發(fā)表于 2025-3-23 09:42:51 | 只看該作者
https://doi.org/10.1007/978-3-642-96522-7Approximation; Differentialgleichung; Eigenvektor; Eigenwertproblem; Interpolation; Interpolation (Math; )
12#
發(fā)表于 2025-3-23 14:10:03 | 只看該作者
13#
發(fā)表于 2025-3-23 21:49:55 | 只看該作者
Numerische Integrationatur. Wir werden uns jedoch nur mit den bekannteren und bei gr??eren Klassen von Integralen anwendbaren Verfahren befassen. Diese k?nnen zum Teil auch dazu verwendet werden, das bestimmte Integral über eine durch Messungen gegebene empirische Funktion gen?hert zu berechnen.
14#
發(fā)表于 2025-3-24 01:18:04 | 只看該作者
Textbook 19791st editionen vertraut machen. Dabei werden nur solche Verfahren betrachtet, die für technische und phy- sikalische Anwendungen von Bedeutung sind. Die zugeh?rigen theoretischen Unter- suchungen werden nur so weit geführt, wie es für das Verst?ndnis notwendig ist. Trotzdem hoffe ich, da? das Buch, das ebenso w
15#
發(fā)表于 2025-3-24 05:40:34 | 只看該作者
16#
發(fā)表于 2025-3-24 09:46:58 | 只看該作者
17#
發(fā)表于 2025-3-24 10:51:05 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:47 | 只看該作者
Anfangswertprobleme gew?hnlicher Differentialgleichungenlgleichung 1. Ordnung. Jedes System von Funktionen y. = y.(x),...,y. = y.(x) mit y. ∈ C. ((a,b)), i = 1,...,n, das (14.1–1) im Intervall (a,b) identisch erfüllt, hei?t L?sungssystem oder kürzer L?sung von (14.1–1).
19#
發(fā)表于 2025-3-24 19:11:41 | 只看該作者
Rand- und Eigenwertprobleme gew?hnlicher Differentialgleichungenleichungen. Entsprechendes gilt auch für Eigenwertprobleme. Sie beschreiben oft eine “Idealisierung” der technischen Vorg?nge, man findet sie daher h?ufig in Gebieten der elementaren technischen Mechanik.
20#
發(fā)表于 2025-3-25 00:57:15 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
当雄县| 林州市| 安宁市| 七台河市| 大城县| 潞西市| 海阳市| 东阳市| 全州县| 霍城县| 元谋县| 广西| 宿州市| 龙里县| 灯塔市| 山阴县| 峨边| 来宾市| 娄底市| 渝中区| 东港市| 丹棱县| 漯河市| 永宁县| 保德县| 绿春县| 塘沽区| 乌恰县| 赣州市| 博白县| 洪江市| 中山市| 积石山| 手游| 阳泉市| 保靖县| 柏乡县| 沭阳县| 广安市| 绵阳市| 赤峰市|