找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Treatment of Integral Equations / Numerische Behandlung von Integralgleichungen; Workshop on Numerica J. Albrecht,L. Collatz Book

[復(fù)制鏈接]
樓主: Odious
31#
發(fā)表于 2025-3-26 23:04:49 | 只看該作者
32#
發(fā)表于 2025-3-27 02:22:09 | 只看該作者
33#
發(fā)表于 2025-3-27 07:45:34 | 只看該作者
,Ein Extrapolationsverfahren für Volterra-Integralgleichungen 2. Art,thod is based on the existence of an asymptotic expansion in even powers of the stepsize h for the midpoint-rule; for evaluating the occuring integrals the Gaussian quatrature rule is used. Convergence and stability properties of the method are investigated, and a few numerical results are given.
34#
發(fā)表于 2025-3-27 10:39:38 | 只看該作者
The Simultaneous Use of Differential and Integral Equations in One Physical Problem,ntial and integral forms and each should be employed simultaneously in different regions of the domain. This in turn encourages engineers to use different methodologies in each region instead of a single methodology as commonly done for the entire region.
35#
發(fā)表于 2025-3-27 17:04:08 | 只看該作者
Mesh Refinement Methods for Integral Equations,of problems. The object of this paper is to consider the application of those methods to the solution of nonlinear integral equations including eigenproblems for integral operators. This paper will also include a report on some numerical experiments with these methods.
36#
發(fā)表于 2025-3-27 21:11:55 | 只看該作者
37#
發(fā)表于 2025-3-27 22:47:32 | 只看該作者
Die Numerische Behandlung von Integralgleichungen Zweiter Art Mittels Splinefunktionen,function spaces with one-dimensional domain, but the results obtained for this special case can be generalized. Further, the applicability of the method to integral equations with weak singular kernel is investigated.
38#
發(fā)表于 2025-3-28 02:58:41 | 只看該作者
,The Numerical Solution of Laplace’s Equation in Three Dimensions—II,ation over U is solved numerically using Galerkin’s method, with spherical harmonics as the basis functions. The resulting numerical method converges rapidly, although great care must be taken to evaluate the Galerkin coefficients as efficiently as possible.
39#
發(fā)表于 2025-3-28 06:59:35 | 只看該作者
40#
發(fā)表于 2025-3-28 13:42:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
个旧市| 阳江市| 仁化县| 松阳县| 赤壁市| 关岭| 呈贡县| 彝良县| 蓝山县| 平泉县| 铜陵市| 临夏市| 鸡西市| 渑池县| 谷城县| 茌平县| 凌源市| 无极县| 穆棱市| 安平县| 隆子县| 桃源县| 绍兴市| 无锡市| 万源市| 丰都县| 北辰区| 涟源市| 东乡族自治县| 疏附县| 额济纳旗| 尼木县| 濉溪县| 蒙阴县| 五台县| 鲁山县| 齐河县| 九寨沟县| 和硕县| 大厂| 鸡西市|