找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Treatment of Eigenvalue Problems Vol. 3 / Numerische Behandlung von Eigenwertaufgaben Band; Workshop in Oberwolf J. Albrecht,L. C

[復(fù)制鏈接]
樓主: 瘦削
41#
發(fā)表于 2025-3-28 17:26:26 | 只看該作者
Ueber Eigenwerte Symmetrischer Membranen,le monotonicity arguments. In the present case of symmetric domains, it is important to know their conformal radius (mapping radius) at the center of symmetry. For some symmetric domains there is an exact elementary ratio of the conformal radii. Also, some symmetric membranes have the same first eigenvalue.
42#
發(fā)表于 2025-3-28 20:54:19 | 只看該作者
43#
發(fā)表于 2025-3-29 00:58:38 | 只看該作者
44#
發(fā)表于 2025-3-29 04:56:41 | 只看該作者
International Series of Numerical Mathematicshttp://image.papertrans.cn/n/image/669241.jpg
45#
發(fā)表于 2025-3-29 08:16:30 | 只看該作者
46#
發(fā)表于 2025-3-29 11:43:32 | 只看該作者
Hartree-Fock Methods a Realization of Variational Methods in Computing Energy Levels in Atoms,In this paper the well known Hartree-Fock methods are interpreted as variational methods. Since good and reliable upper bounds for the lowest eigenvalue of the Schr?dinger equation are very important, we discuss the different kinds of numerical errors during the computation and give some hints how to control them.
47#
發(fā)表于 2025-3-29 16:05:47 | 只看該作者
An Inclusion Principle for Eigenvalues,A general inclusion principle for eigenvalues with special properties (e.g. belonging to nonnegative eigenvectors) is developed and compared with Collatz’s theorem.
48#
發(fā)表于 2025-3-29 22:53:06 | 只看該作者
49#
發(fā)表于 2025-3-30 03:01:14 | 只看該作者
50#
發(fā)表于 2025-3-30 04:57:15 | 只看該作者
An Elementary Proof of Monotony of the Temple Quotients,Monotony of the Temple quotients has been proved recently by F. Goerisch and J. Albrecht in their common work [1]. In the present paper, another proof — let us call it an elementary one — of this fact is presented.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 04:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开化县| 望城县| 繁昌县| 乌鲁木齐县| 宜君县| 崇义县| 库尔勒市| 微山县| 崇左市| 比如县| 霍城县| 隆林| 都兰县| 吴堡县| 宝丰县| 罗田县| 东阿县| 通州市| 阿拉善右旗| 襄汾县| 安泽县| 大埔县| 余庆县| 丰都县| 垫江县| 射阳县| 镇江市| 全椒县| 宁化县| 佳木斯市| 泽库县| 外汇| 天镇县| 柳江县| 印江| 北票市| 克什克腾旗| 敖汉旗| 镇远县| 连江县| 德庆县|