找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Techniques in Continuum Mechanics; Proceedings of the S Wolfgang Hackbusch,Kristian Witsch Conference proceedings 1987 Springer F

[復(fù)制鏈接]
樓主: 字里行間
31#
發(fā)表于 2025-3-26 21:22:34 | 只看該作者
32#
發(fā)表于 2025-3-27 04:20:52 | 只看該作者
Postprocessing of a Finite Element Scheme with Linear Elements, problems. We also generalize a local superconvergence technique recently analyzed by K?í?ek and Neittaanm?ki ([20]) to a global technique. Finally, we show that it is possible to obtain O(h.) accuracy for the gradient in some cases when only linear elements are used. Numerical tests are presented.
33#
發(fā)表于 2025-3-27 07:48:18 | 只看該作者
34#
發(fā)表于 2025-3-27 10:01:04 | 只看該作者
35#
發(fā)表于 2025-3-27 14:23:20 | 只看該作者
Notes on Numerical Fluid Mechanics and Multidisciplinary Designhttp://image.papertrans.cn/n/image/669235.jpg
36#
發(fā)表于 2025-3-27 19:04:22 | 只看該作者
37#
發(fā)表于 2025-3-28 00:58:56 | 只看該作者
Optimal Error Estimates and Adaptive Time and Space Step Control for Linear Parabolic Problems,In this note we present recent developments in the program for constructing adaptive algorithms for numerical methods for parabolic type problems or stiff initial value prolems that was initiated in Johnson [6] and was continued in Eriksson, Johnson [3] and Johnson, Nie, Thomée [7].
38#
發(fā)表于 2025-3-28 05:22:17 | 只看該作者
39#
發(fā)表于 2025-3-28 07:39:14 | 只看該作者
On a Simple Finite Element Method for Plate Bending Problems,We prove the convergence of a simple finite element method based on the Discrete Kirchhoff Triangle (DKT) for solving the Mindlin plate equations. If t is the thickness of the plate, an error bound .(h.+t.) is obtained for both the bending and the rotations.
40#
發(fā)表于 2025-3-28 11:29:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万年县| 福州市| 甘德县| 三河市| 明溪县| 文成县| 赣州市| 香港 | 美姑县| 沂水县| 田林县| 连江县| 房山区| 兴仁县| 通河县| 区。| 大田县| 贵州省| 岳阳市| 禄丰县| 景泰县| 黑水县| 旌德县| 孟津县| 平潭县| 石门县| 富源县| 巍山| 措美县| 沿河| 福清市| 南昌市| 天柱县| 吴川市| 文昌市| 清河县| 泽普县| 泗阳县| 定陶县| 祁阳县| 金坛市|