找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Techniques in Continuum Mechanics; Proceedings of the S Wolfgang Hackbusch,Kristian Witsch Conference proceedings 1987 Springer F

[復(fù)制鏈接]
樓主: 字里行間
31#
發(fā)表于 2025-3-26 21:22:34 | 只看該作者
32#
發(fā)表于 2025-3-27 04:20:52 | 只看該作者
Postprocessing of a Finite Element Scheme with Linear Elements, problems. We also generalize a local superconvergence technique recently analyzed by K?í?ek and Neittaanm?ki ([20]) to a global technique. Finally, we show that it is possible to obtain O(h.) accuracy for the gradient in some cases when only linear elements are used. Numerical tests are presented.
33#
發(fā)表于 2025-3-27 07:48:18 | 只看該作者
34#
發(fā)表于 2025-3-27 10:01:04 | 只看該作者
35#
發(fā)表于 2025-3-27 14:23:20 | 只看該作者
Notes on Numerical Fluid Mechanics and Multidisciplinary Designhttp://image.papertrans.cn/n/image/669235.jpg
36#
發(fā)表于 2025-3-27 19:04:22 | 只看該作者
37#
發(fā)表于 2025-3-28 00:58:56 | 只看該作者
Optimal Error Estimates and Adaptive Time and Space Step Control for Linear Parabolic Problems,In this note we present recent developments in the program for constructing adaptive algorithms for numerical methods for parabolic type problems or stiff initial value prolems that was initiated in Johnson [6] and was continued in Eriksson, Johnson [3] and Johnson, Nie, Thomée [7].
38#
發(fā)表于 2025-3-28 05:22:17 | 只看該作者
39#
發(fā)表于 2025-3-28 07:39:14 | 只看該作者
On a Simple Finite Element Method for Plate Bending Problems,We prove the convergence of a simple finite element method based on the Discrete Kirchhoff Triangle (DKT) for solving the Mindlin plate equations. If t is the thickness of the plate, an error bound .(h.+t.) is obtained for both the bending and the rotations.
40#
發(fā)表于 2025-3-28 11:29:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
钦州市| 德州市| 句容市| 孟州市| 寿阳县| 县级市| 毕节市| 淮安市| 兰溪市| 河南省| 卢氏县| 十堰市| 凌云县| 平邑县| 长汀县| 涟源市| 丽江市| 荣昌县| 东方市| 呼玛县| 涞源县| 道真| 清徐县| 南郑县| 镇康县| 绍兴县| 岳池县| 沈丘县| 琼海市| 永靖县| 苍南县| 轮台县| 静安区| 南城县| 荃湾区| 根河市| 铜陵市| 高密市| 开化县| 乌拉特中旗| 和静县|