找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Techniques for Boundary Element Methods; Proceedings of the S Wolfgang Hackbusch Conference proceedings 1992 Springer Fachmedien

[復(fù)制鏈接]
樓主: Dopamine
51#
發(fā)表于 2025-3-30 09:29:25 | 只看該作者
On the Existence and Evaluation of the Derivatives of the Single Layer Potential,rivatives are expressed by singular integrals, the regularisation of these integrals, including its calculation, is necessary. This problem is considered in this paper in the case of a two dimensional surface in ?..
52#
發(fā)表于 2025-3-30 16:28:08 | 只看該作者
The triangle-to-square transformation for finite-part integrals,ite-part integrals arising in the context of 3D-BEM. Under certain symmetry hypotheses we show that the numerical computation of these integrals can be performed by using a tensor product of a one-dimensional finite-part integration formula and a one-dimensional formula for smooth integrands..Numerical examples are presented.
53#
發(fā)表于 2025-3-30 16:38:06 | 只看該作者
54#
發(fā)表于 2025-3-30 21:44:28 | 只看該作者
55#
發(fā)表于 2025-3-31 01:10:21 | 只看該作者
978-3-528-07633-7Springer Fachmedien Wiesbaden 1992
56#
發(fā)表于 2025-3-31 06:12:31 | 只看該作者
57#
發(fā)表于 2025-3-31 09:51:37 | 只看該作者
58#
發(fā)表于 2025-3-31 14:30:28 | 只看該作者
A Panel Method Using Numerical Integration,Panel methods are used to determine the singularity distribution (sources in most cases) on a body surfaces so that the Neumann condition — no flow across the body boundary —.is fulfilled on the body surface ..
59#
發(fā)表于 2025-3-31 18:00:56 | 只看該作者
60#
發(fā)表于 2025-3-31 22:57:56 | 只看該作者
Computation of Plane Stress Fields by the Covering Domain Method,ational fractional functions for conformal mapping. Beyond an introductory example in order to explain the method of covering domains, applications are dealt with for a plate with an elliptic hole and a rectangular plate with a lip crack.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 21:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和硕县| 察哈| 高唐县| 台中市| 湛江市| 同心县| 德化县| 班玛县| 成武县| 浠水县| 合川市| 武宣县| 布尔津县| 康保县| 板桥市| 鲁甸县| 梓潼县| 钦州市| 莱阳市| 舒城县| 镶黄旗| 武威市| 云龙县| 鱼台县| 长丰县| 滦南县| 津市市| 巍山| 宜城市| 弥勒县| 新野县| 开鲁县| 沁阳市| 府谷县| 顺平县| 嘉荫县| 莆田市| 醴陵市| 上林县| 遵义县| 咸阳市|